An Introduction to Delay Differential Equations with Applications to the Life Sciences

An Introduction to Delay Differential Equations with Applications to the Life Sciences PDF

Author: hal smith

Publisher: Springer Science & Business Media

Published: 2010-09-29

Total Pages: 178

ISBN-13: 1441976469

DOWNLOAD EBOOK →

This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.

Applied Delay Differential Equations

Applied Delay Differential Equations PDF

Author: Thomas Erneux

Publisher: Springer Science & Business Media

Published: 2009-03-06

Total Pages: 204

ISBN-13: 0387743723

DOWNLOAD EBOOK →

Applied Delay Differential Equations is a friendly introduction to the fast-growing field of time-delay differential equations. Written to a multi-disciplinary audience, it sets each area of science in his historical context and then guides the reader towards questions of current interest.

Delay Differential Equations and Applications to Biology

Delay Differential Equations and Applications to Biology PDF

Author: Fathalla A. Rihan

Publisher: Springer Nature

Published: 2021-08-19

Total Pages: 292

ISBN-13: 9811606269

DOWNLOAD EBOOK →

This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.

Delay Differential Equations

Delay Differential Equations PDF

Author: Balakumar Balachandran

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 349

ISBN-13: 0387855955

DOWNLOAD EBOOK →

Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.

Oscillation Theory of Delay Differential Equations

Oscillation Theory of Delay Differential Equations PDF

Author: I. Győri

Publisher: Clarendon Press

Published: 1991

Total Pages: 392

ISBN-13:

DOWNLOAD EBOOK →

In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.

Differential Equations

Differential Equations PDF

Author: Gaston M. N'Guerekata

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9781613240915

DOWNLOAD EBOOK →

This book presents and discusses new developments in the study of differential equations. Topics discussed include pseudo almost automorphic solutions for some non-linear differential equations; positive solutions for p-laplacian dynamic delay differential equations on time scales; semi-linear fractional differential equations; positive solutions for a class of second-order impulsive singular differential equations in banach spaces and non-linear hyperbolic second-order partial differential equations with delay.

Delay Differential Equations

Delay Differential Equations PDF

Author: Yang Kuang

Publisher: Academic Press

Published: 1993-03-05

Total Pages: 398

ISBN-13: 9780080960029

DOWNLOAD EBOOK →

Delay Differential Equations emphasizes the global analysis of full nonlinear equations or systems. The book treats both autonomous and nonautonomous systems with various delays. Key topics addressed are the possible delay influence on the dynamics of the system, such as stability switching as time delay increases, the long time coexistence of populations, and the oscillatory aspects of the dynamics. The book also includes coverage of the interplay of spatial diffusion and time delays in some diffusive delay population models. The treatment presented in this monograph will be of great value in the study of various classes of DDEs and their multidisciplinary applications.

New developments in Functional and Fractional Differential Equations and in Lie Symmetry

New developments in Functional and Fractional Differential Equations and in Lie Symmetry PDF

Author: Ioannis P. Stavroulakis

Publisher: MDPI

Published: 2021-09-03

Total Pages: 156

ISBN-13: 303651158X

DOWNLOAD EBOOK →

Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows: Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.

Biological Delay Systems

Biological Delay Systems PDF

Author: Norman MacDonald

Publisher: Cambridge University Press

Published: 2008-01-03

Total Pages: 256

ISBN-13: 9780521048163

DOWNLOAD EBOOK →

In studying the dynamics of populations, whether of animals, plants or cells, it is crucial to allow for delays such as those due to gestation, maturation or transport. This book deals with a fundamental question in the analysis of the effects of delays, namely whether they affect the stability of steady states.

Mathematical Modeling and Applications in Nonlinear Dynamics

Mathematical Modeling and Applications in Nonlinear Dynamics PDF

Author: Albert C.J. Luo

Publisher: Springer

Published: 2016-01-28

Total Pages: 205

ISBN-13: 3319266306

DOWNLOAD EBOOK →

The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems.