Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells

Amorphous Silicon / Crystalline Silicon Heterojunction Solar Cells PDF

Author: Wolfgang Rainer Fahrner

Publisher: Springer Science & Business Media

Published: 2013-04-23

Total Pages: 119

ISBN-13: 364237039X

DOWNLOAD EBOOK →

Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to “fill in the blanks” on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells PDF

Author: Wilfried G. J. H. M. van Sark

Publisher: Springer Science & Business Media

Published: 2011-11-16

Total Pages: 588

ISBN-13: 3642222757

DOWNLOAD EBOOK →

Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Silicon Heterojunction Solar Cells

Silicon Heterojunction Solar Cells PDF

Author: W.R. Fahrner

Publisher: Trans Tech Publications Ltd

Published: 2006-08-15

Total Pages: 208

ISBN-13: 3038131024

DOWNLOAD EBOOK →

The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells

Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells PDF

Author: Wilfried G. J. H. M. van Sark

Publisher: Springer

Published: 2012-02-23

Total Pages: 582

ISBN-13: 9783642222764

DOWNLOAD EBOOK →

Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

High-Efficiency Crystalline Silicon Solar Cells

High-Efficiency Crystalline Silicon Solar Cells PDF

Author: Eun-Chel Cho

Publisher: MDPI

Published: 2021-01-06

Total Pages: 90

ISBN-13: 3039436295

DOWNLOAD EBOOK →

This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.

Crystalline Silicon Heterojunction Solar Cells

Crystalline Silicon Heterojunction Solar Cells PDF

Author: Denís Pascual Sánchez

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

This work is a slight research on silicon heterojunction solar cells which have been of great interest recently. The aim is to span fabrication, characterization and simulation and to reach a broad but shallow knowledge about this devices. Within heterojunction solar cells, this work is particularly focused on amorphous silicon/crystalline silicon (a-Si/c-Si) heterojunction solar cells and Transition-Metal-Oxide (TMO) silicon heterojunction solar cells (TMO/c-Si). TMO started being of interest very recently because they can substitute a-Si in a solar cell lowering fabrication costs while achieving relatively good performance. Unlikely, it is not clear why it can play the same role as a-Si since they are very different materials. Therefore simulating TMO based devices is still far from being reliable. Simulations of a-Si heterojunction solar cells have been performed since it seems to be the starting point of the road to simulating TMO. The fabrication and characterization processes are almost the same for the two types of solar cell. Since the final aim is to understand TMO heterojunction solar cells, this part is dedicated to them. Three different TMOs heterojunction solar cells have been fabricated and characterized which are M oOx , W Ox and V2 O5 while the simulation has focused on a-Si. The work has been carried out collaborating with a research group from electronics department of the UPC (Universitat Politèctica de Cataunya). Silvaco ATLAS electronic device simulator has been used to reproduce the a-Si HIT (Heterojuntion with Intrinsic Thin layer) solar cell figures of merit.

Silicon Heterojunction Solar Cells: The Key Role of Heterointerfaces and Their Impact on the Performance

Silicon Heterojunction Solar Cells: The Key Role of Heterointerfaces and Their Impact on the Performance PDF

Author: Miroslav Mikolášek

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

This chapter is dedicated to the processes linked with the collection of photo-generated carriers in silicon heterojunction (SHJ) solar cells with a focus on the key role of the amorphous silicon/crystalline silicon heterojunction. The intention is to explain the role of carrier inversion at the heterointerface and connect it with the properties of the SHJ to obtain deeper understanding of carrier transport properties and collection, which goes beyond amorphous silicon-based structures and will contribute to understanding the new emerging SHJ based on amorphous silicon oxide and metal oxide emitter layers. The study is extended by a simulation of the TCO/emitter interface with the aim to reveal the effect of parasitic Schottky barrier height on the performance of the SHJ solar cell. In addition, the simulation study of SHJ under concentrated light and varied temperatures is outlined to show the main limitations and prospects of SHJ structures for utilization under concentrated light.

Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology

Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology PDF

Author: Ruud E.I. Schropp

Publisher: Springer

Published: 2016-07-18

Total Pages: 215

ISBN-13: 1461556317

DOWNLOAD EBOOK →

Amorphous silicon solar cell technology has evolved considerably since the first amorphous silicon solar cells were made at RCA Laboratories in 1974. Scien tists working in a number of laboratories worldwide have developed improved alloys based on hydrogenated amorphous silicon and microcrystalline silicon. Other scientists have developed new methods for growing these thin films while yet others have developed new photovoltaic (PV) device structures with im proved conversion efficiencies. In the last two years, several companies have constructed multi-megawatt manufacturing plants that can produce large-area, multijunction amorphous silicon PV modules. A growing number of people be lieve that thin-film photovoltaics will be integrated into buildings on a large scale in the next few decades and will be able to make a major contribution to the world's energy needs. In this book, Ruud E. I. Schropp and Miro Zeman provide an authoritative overview of the current status of thin film solar cells based on amorphous and microcrystalline silicon. They review the significant developments that have occurred during the evolution of the technology and also discuss the most im portant recent innovations in the deposition of the materials, the understanding of the physics, and the fabrication and modeling of the devices.