Allele Mining for Genomic Designing of Grain Legume Crops

Allele Mining for Genomic Designing of Grain Legume Crops PDF

Author: Chittaranjan Kole

Publisher:

Published: 2024

Total Pages: 0

ISBN-13: 9781003385059

DOWNLOAD EBOOK →

"This book deliberates on the concept, strategies, tools, and techniques of allele mining in grain legume crops and its application potential in genome elucidation and improvement including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and also studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Development of advanced genomic techniques including PCR-based allele priming and Eco-TILLING based allele mining are being widely used now for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and also with genome plasticity to adapt the climate change scenarios. All these concepts and strategies along with precise success stories are presented in the chapters dedicated to the major grain legume crops. The first book on the novel strategy of allele mining in grain legume crops for precise breeding Presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources Depicts case studies of PCR-based allele priming and Eco-TILLING based allele mining Elaborates on gene discovery and gene prediction in major grain legume crops This book will be useful to the students and faculties in various plant science disciplines including genetics, genomics, molecular breeding, agronomy, and bioinformatics; the scientists in seed industries; and also the policymakers and funding agencies interested in crop improvement"--

Allele Mining for Genomic Designing of Cereal Crops

Allele Mining for Genomic Designing of Cereal Crops PDF

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2024-05-30

Total Pages: 414

ISBN-13: 1040020070

DOWNLOAD EBOOK →

This book deliberates on the concept, strategies, tools, and techniques of allele mining in cereal crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Development of advanced genomic techniques including PCR-based allele priming and Eco-TILLING-based allele mining are being widely used now for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and with genome plasticity to adapt the climate change scenarios. All these concepts and strategies along with precise success stories are presented in the chapters dedicated to the major cereal crops. The first book on the novel strategy of allele mining in cereal crops for precise breeding Presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources Depicts case studies of PCR-based allele priming and Eco-Tilling-based allele mining Elaborates on gene discovery and gene prediction in major cereal crops This book will be useful to the students and faculties in various plant science disciplines including genetics, genomics, molecular breeding, agronomy, and bioinformatics; the scientists in seed industries; and the policymakers and funding agencies interested in crop improvement.

Allele Mining for Genomic Designing of Grain Legume Crops

Allele Mining for Genomic Designing of Grain Legume Crops PDF

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2024-09-30

Total Pages: 292

ISBN-13: 1040117376

DOWNLOAD EBOOK →

This book deliberates on the concept, strategies, tools, and techniques of allele mining in grain legume crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and also studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Development of advanced genomic techniques, including PCR-based allele priming and EcoTILLING-based allele mining, is being widely used now for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs, and also with genome plasticity to adapt to climate change scenarios. All these concepts and strategies, along with precise success stories, are presented in the chapters dedicated to the major grain legume crops. 1. The first book on the novel strategy of allele mining in grain legume crops for precise breeding. 2. Presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources. 3. Depicts case studies of PCR-based allele priming and EcoTILLING-based allele mining. 4. Elaborates on gene discovery and gene prediction in major grain legume crops. This book will be useful to students and faculties in various plant science disciplines, including genetics, genomics, molecular breeding, agronomy, and bioinformatics; to scientists in seed industries; and also to policymakers and funding agencies interested in crop improvement.

Genetic and Genomic Resources of Grain Legume Improvement

Genetic and Genomic Resources of Grain Legume Improvement PDF

Author: Mohar Singh

Publisher: Newnes

Published: 2013-07-18

Total Pages: 322

ISBN-13: 0123984947

DOWNLOAD EBOOK →

Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. Explores origin, distribution and diversity of grain legumes Presents information on germplasm collection, evaluation and maintenance Offers insight into pre-breeding/germplasm enhancement efforts Integrates genomic and genetic resources in crop improvement Internationally contributed work

Allele Mining for Genomic Designing of Vegetable Crops

Allele Mining for Genomic Designing of Vegetable Crops PDF

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2024-06-03

Total Pages: 495

ISBN-13: 1040022499

DOWNLOAD EBOOK →

This book deliberates on the concept, strategies, tools, and techniques of allele mining in vegetable crops and its application potential in genome elucidation and improvement including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Development of advanced genomic techniques including PCR-based allele priming and Eco-TILLING based allele mining are being widely used now for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and with genome plasticity to adapt the climate change scenarios. All these concepts and strategies along with precise success stories are presented in the chapters dedicated to the major vegetable crops. The first book on the novel strategy of allele mining in vegetable crops for precise breeding Presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources Depicts case studies of PCR-based allele priming and Eco-TILLING based allele mining Elaborates on gene discovery and gene prediction in major vegetable crops This book will be useful to the students and faculties in various plant science disciplines including genetics, genomics, molecular breeding, agronomy, and bioinformatics; the scientists in seed industries; and, the policymakers and funding agencies interested in crop improvement.

Allele Mining for Genomic Designing of Oilseed Crops

Allele Mining for Genomic Designing of Oilseed Crops PDF

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2024-09-18

Total Pages: 315

ISBN-13: 1040103367

DOWNLOAD EBOOK →

This book deliberates on the concept, strategies, tools, and techniques of allele mining in oilseed crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in global germplasm collections, specifically consisting of wild allied species and local landraces for almost all major crops, have facilitated allele mining. The development of advanced genomic techniques, including PCR-based allele priming and Eco-TILLING-based allele mining, is now widely used for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and with genome plasticity to adapt to climate change scenarios. All these concepts and strategies, along with precise success stories, are presented in the chapters dedicated to the major oilseed crops. 1. This is the first book on the novel strategy of allele mining in oilseed crops for precise breeding. 2. This book presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources. 3. This book depicts case studies of PCR-based allele priming and Eco-TILLING based allele mining. 4. This book elaborates on gene discovery and gene prediction in major oilseed crops. This book will be useful to students and faculties in various plant science disciplines, including genetics, genomics, molecular breeding, agronomy, and bioinformatics; scientists in seed industries; and policymakers and funding agencies interested in crop improvement.

Allele Mining for Genomic Designing of Fruit Crops

Allele Mining for Genomic Designing of Fruit Crops PDF

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2024-03-29

Total Pages: 555

ISBN-13: 1003846556

DOWNLOAD EBOOK →

This book deliberates on the concept, strategies, tools, and techniques of allele mining in fruit crops and its application potential in genome elucidation and improvement including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and also studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Advanced genomic techniques have been developed including PCR-based allele priming and Eco-TILLING-based allele mining that are being widely used now for mining superior alleles. Allele discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching with consumer needs and also with genome plasticity to adapt the climate change scenarios. All these concepts and strategies along with precise success stories are presented over the chapters dedicated to the major fruit crops. The features of this book are as follows: The first book on the novel strategy of allele mining in fruit crops for precise breeding Presents genomic strategies of mining superior alleles underlying agronomic traits from genomic resources Depicts case studies of PCR-based allele priming and Eco-TILLING-based allele mining Elaborates on gene discovery and gene prediction in major fruit crops This book will be useful to students and faculties in various plant science disciplines including genetics, genomics, molecular breeding, agronomy, and bioinformatics; scientists in seed industries; and also policy makers and funding agencies interested in crop improvement.

Allele Mining for Genomic Designing of Oilseed Crops

Allele Mining for Genomic Designing of Oilseed Crops PDF

Author: Chittaranjan Kole

Publisher: CRC Press

Published: 2024-09-18

Total Pages: 494

ISBN-13: 1040103383

DOWNLOAD EBOOK →

This book deliberates on the concept, strategies, tools, and techniques of allele mining in oilseed crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in global germplasm collections, specifically consisting of wild allied species and local landraces for almost all major crops, have facilitated allele mining. The development of advanced genomic techniques, including PCR-based allele priming and Eco-TILLING-based allele mining, is now widely used for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and with genome plasticity to adapt to climate change scenarios. All these concepts and strategies, along with precise success stories, are presented in the chapters dedicated to the major oilseed crops. 1. This is the first book on the novel strategy of allele mining in oilseed crops for precise breeding. 2. This book presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources. 3. This book depicts case studies of PCR-based allele priming and Eco-TILLING based allele mining. 4. This book elaborates on gene discovery and gene prediction in major oilseed crops. This book will be useful to students and faculties in various plant science disciplines, including genetics, genomics, molecular breeding, agronomy, and bioinformatics; scientists in seed industries; and policymakers and funding agencies interested in crop improvement.

Genomic Designing for Biotic Stress Resistant Cereal Crops

Genomic Designing for Biotic Stress Resistant Cereal Crops PDF

Author: Chittaranjan Kole

Publisher: Springer Nature

Published: 2021-08-31

Total Pages: 340

ISBN-13: 3030758796

DOWNLOAD EBOOK →

This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.

Genetic and Genomic Resources of Grain Legume Improvement

Genetic and Genomic Resources of Grain Legume Improvement PDF

Author: Petr Smýkal

Publisher: Elsevier Inc. Chapters

Published: 2013-07-18

Total Pages: 54

ISBN-13: 0128064374

DOWNLOAD EBOOK →

Pea is an important temperate region pulse, with feed, fodder and vegetable uses. It originated and was domesticated in Middle East and Mediterranean regions, and formed important dietary components of early civilizations. Although Pisum is a very small genus with two or three species, it is diverse and structured, reflecting taxonomy, ecogeography and breeding gene pools. This diversity has been preserved in collections totalling about 90,000 accessions. Core collections have been formed, facilitating phenotypic and agronomic evaluations. However, only 3% of ex situ collections are wild Pisum sp., with substantially larger diversity. The genomic resources allow initiation of association mapping, linking genetic diversity with trait manifestation. So far, only a small part of wild gene pools have been exploited in breeding for biotic and abiotic stresses. Current genomic knowledge and technologies can facilitate allele mining for novel traits and incorporation from wild Pisum sp. into elite domestic genetic backgrounds.