Configurable Intelligent Optimization Algorithm

Configurable Intelligent Optimization Algorithm PDF

Author: Fei Tao

Publisher: Springer

Published: 2014-08-18

Total Pages: 364

ISBN-13: 3319088408

DOWNLOAD EBOOK →

Presenting the concept and design and implementation of configurable intelligent optimization algorithms in manufacturing systems, this book provides a new configuration method to optimize manufacturing processes. It provides a comprehensive elaboration of basic intelligent optimization algorithms, and demonstrates how their improvement, hybridization and parallelization can be applied to manufacturing. Furthermore, various applications of these intelligent optimization algorithms are exemplified in detail, chapter by chapter. The intelligent optimization algorithm is not just a single algorithm; instead it is a general advanced optimization mechanism which is highly scalable with robustness and randomness. Therefore, this book demonstrates the flexibility of these algorithms, as well as their robustness and reusability in order to solve mass complicated problems in manufacturing. Since the genetic algorithm was presented decades ago, a large number of intelligent optimization algorithms and their improvements have been developed. However, little work has been done to extend their applications and verify their competence in solving complicated problems in manufacturing. This book will provide an invaluable resource to students, researchers, consultants and industry professionals interested in engineering optimization. It will also be particularly useful to three groups of readers: algorithm beginners, optimization engineers and senior algorithm designers. It offers a detailed description of intelligent optimization algorithms to algorithm beginners; recommends new configurable design methods for optimization engineers, and provides future trends and challenges of the new configuration mechanism to senior algorithm designers.

Process Planning Optimization in Reconfigurable Manufacturing Systems

Process Planning Optimization in Reconfigurable Manufacturing Systems PDF

Author: Farayi Musharavati

Publisher: Universal-Publishers

Published: 2010-09

Total Pages: 200

ISBN-13: 1599423596

DOWNLOAD EBOOK →

To date, reconfigurable manufacturing systems (RMSs) are among the most effective manufacturing styles that can offer manufacturers an alternative way of facing up to the challenges of continual changes in production requirements within the global, competitive and dynamic manufacturing environments. However, availability of optimal process plans that are suitable for reconfigurable manufacturing is one of the key enablers - yet to be fully unlocked - for realizing the full benefits of true RMSs. To unlock the process planning key and advance the state of art of reconfigurable manufacturing in the manufacturing industry, a number of questions need to be answered: (i) what decision making models and (ii) what computational techniques, can be applied to provide optimal manufacturing process planning solutions that are suitable for logical reconfiguration in manufacturing systems? To answer these questions, you must understand how to model reconfigurable manufacturing activities in an optimization perspective. You must also understand how to develop and select appropriate optimization techniques for solving process planning problems in manufacturing systems. To this end, Process Planning Optimization in Reconfigurable Manufacturing Systems covers: the design and operation of RMSs, optimal process planning modelling for reconfigurable manufacturing and the design and implementation of heuristic algorithm design techniques. The author explores how to: model optimization problems, select suitable optimization techniques, develop optimization algorithms, comparatively analyze the performance of candidate metaheuristics and how to investigate the effects of optimal process planning solutions on operating levels in manufacturing systems. This book delineates five alternative heuristic algorithm design techniques based on simulated annealing, genetic algorithms and the boltzmann machine that are tasked to solve manufacturing process planning optimization problems in RMSs. After reading this book, you will understand: how a reconfigurable manufacturing system works, the different types of manufacturing optimization problems associated with reconfigurable manufacturing, as well as the conventional and intelligent techniques that are suitable for solving process planning optimization problems. You will also be able to develop and implement effective optimization procedures and algorithms for a wide spectrum of optimization problems in design and reconfigurable manufacturing."

Mechanical Design Optimization Using Advanced Optimization Techniques

Mechanical Design Optimization Using Advanced Optimization Techniques PDF

Author: R. Venkata Rao

Publisher: Springer Science & Business Media

Published: 2012-01-15

Total Pages: 323

ISBN-13: 1447127471

DOWNLOAD EBOOK →

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .

Computer-Aided Design, Engineering, and Manufacturing

Computer-Aided Design, Engineering, and Manufacturing PDF

Author: Cornelius T. Leondes

Publisher: CRC Press

Published: 2019-04-30

Total Pages: 308

ISBN-13: 1420050001

DOWNLOAD EBOOK →

In the competitive business arena companies must continually strive to create new and better products faster, more efficiently, and more cost effectively than their competitors to gain and keep the competitive advantage. Computer-aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing (CAM) are now the industry standa

Multidisciplinary Design Optimization

Multidisciplinary Design Optimization PDF

Author: Natalia M. Alexandrov

Publisher: SIAM

Published: 1997-01-01

Total Pages: 476

ISBN-13: 9780898713596

DOWNLOAD EBOOK →

Multidisciplinary design optimization (MDO) has recently emerged as a field of research and practice that brings together many previously disjointed disciplines and tools of engineering and mathematics. MDO can be described as a technology, environment, or methodology for the design of complex, coupled engineering systems, such as aircraft, automobiles, and other mechanisms, the behavior of which is determined by interacting subsystems.

Multidisciplinary Design Optimization Supported by Knowledge Based Engineering

Multidisciplinary Design Optimization Supported by Knowledge Based Engineering PDF

Author: Jaroslaw Sobieszczanski-Sobieski

Publisher: John Wiley & Sons

Published: 2015-11-06

Total Pages: 412

ISBN-13: 1118897080

DOWNLOAD EBOOK →

Multidisciplinary Design Optimization supported by Knowledge Based Engineering supports engineers confronting this daunting and new design paradigm. It describes methodology for conducting a system design in a systematic and rigorous manner that supports human creativity to optimize the design objective(s) subject to constraints and uncertainties. The material presented builds on decades of experience in Multidisciplinary Design Optimization (MDO) methods, progress in concurrent computing, and Knowledge Based Engineering (KBE) tools. Key features: Comprehensively covers MDO and is the only book to directly link this with KBE methods Provides a pathway through basic optimization methods to MDO methods Directly links design optimization methods to the massively concurrent computing technology Emphasizes real world engineering design practice in the application of optimization methods Multidisciplinary Design Optimization supported by Knowledge Based Engineering is a one-stop-shop guide to the state-of-the-art tools in the MDO and KBE disciplines for systems design engineers and managers. Graduate or post-graduate students can use it to support their design courses, and researchers or developers of computer-aided design methods will find it useful as a wide-ranging reference.

Design of Flexible Production Systems

Design of Flexible Production Systems PDF

Author: Tullio Tolio

Publisher: Springer Science & Business Media

Published: 2008-12-11

Total Pages: 308

ISBN-13: 3540854142

DOWNLOAD EBOOK →

In the last decade, the production of mechanical components to be assembled in final products produced in high volumes (e.g. cars, mopeds, industrial vehicles, etc.) has undergone deep changes due to the overall modifications in the way companies compete. Companies must consider competitive factors such as short lead times, tight product tolerances, frequent market changes and cost reduction. Anyway, companies often have to define production objectives as trade-offs among these critical factors since it can be difficult to improve all of them. Even if system flexibility is often considered a fundamental requirement for firms, it is not always a desirable characteristic of a system because it requires relevant investment cost which can jeopardize the profitability of the firm. Dedicated systems are not able to adapt to changes of the product characteristics while flexible systems offer more flexibility than what is needed, thus increasing investment and operative costs. Production contexts characterized by mid to high demand volume of well identified families of products in continuous evolution do not require the highest level of flexibility; therefore, manufacturing system flexibility must be rationalized and it is necessary to find out the best trade-off between productivity and flexibility by designing manufacturing systems endowed with the right level of flexibility required by the production problem. This new class of production systems can be named Focused Flexibility Manufacturing Systems-FFMSs. The flexibility degree in FFMSs is related to their ability to cope with volume, mix and technological changes, and it must take into account both present and future changes. The required level of system flexibility impacts on the architecture of the system and the explicit design of flexibility often leads to hybrid systems, i.e. automated integrated systems in which parts can be processed by both general purpose and dedicated machines. This is a key issue of FFMSs and results from the matching of flexibility and productivity that respectively characterize FMSs and Dedicated Manufacturing Systems (DMSs). The market share of the EU in the machine tool sector is 44%; the introduction of focused flexibility would be particularly important for machine tool builders whose competitive advantage is based on the ability of customizing their systems on the basis of needs of their customers. In fact, even if current production contexts frequently present situations which would fit well with the FFMS approach, tradition and know-how of machine tool builders play a crucial role. Firms often agree with the focused flexibility vision, nevertheless they decide not to pay the risk and efforts related to the design of this new system architecture. This is due also to the lack of well-structured design approaches which can help machine tool builders to configure innovative systems. Therefore, the FFMS topic is studied through the book chapters following a shared mission: "To define methodologies and tools to design production systems with a minimum level of flexibility needed to face, during their lifecycle, the product and process evolution both in the technological and demand aspects. The goal is to find out the optimal trade-off between flexibility and productivity". The book framework follows the architecture which has been developed to address the FFMS Design problem. This architecture is both broad and detailed, since it pays attention to all the relevant levels in a firm hierarchy which are involved in the system design. Moreover, the architecture is innovative because it models both the point of view of the machine tool builder and the point of view of the system user. The architecture starts analyzing Manufacturing Strategy issues and generating the possible demand scenario to be faced. Technological aspects play a key role while solving process plan problems for the products in the part family. Strategic and technological data becomes input when a machine tool builder performs system configuration. The resulting system configurations are possible solutions that a system user considers when planning its system capacity. All the steps of the architecture are deeply studied, developing methods and tools to address each subproblem. Particular attention is paid to the methodologies adopted to face the different subproblems: mathematical programming, stochastic programming, simulation techniques and inverse kinematics have been used. The whole architecture provides a general approach to implement the right degree of flexibility and it allows to study how different aspects and decisions taken in a firm impact on each other. The work presented in the book is innovative because it gives links among different research fields, such as Manufacturing Strategy, Process Plan, System Design, Capacity Planning and Performance Evaluation; moreover, it helps to formalize and rationalize a critical area such as manufacturing system flexibility. The addressed problem is relevant at an academic level but, also, at an industrial level. A great deal of industrial sectors need to address the problem of designing systems with the right degree of flexibility; for instance, automotive, white goods, electrical and electronic goods industries, etc. Attention to industrial issues is confirmed by empirical studies and real case analyses which are presented within the book chapters.