Algebraic and Geometric Methods in Nonlinear Control Theory

Algebraic and Geometric Methods in Nonlinear Control Theory PDF

Author: M. Fliess

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 630

ISBN-13: 9400947062

DOWNLOAD EBOOK →

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras ·are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Algebraic and Differential Methods for Nonlinear Control Theory

Algebraic and Differential Methods for Nonlinear Control Theory PDF

Author: Rafael Martínez-Guerra

Publisher: Springer

Published: 2019-01-30

Total Pages: 196

ISBN-13: 3030120252

DOWNLOAD EBOOK →

This book is a short primer in engineering mathematics with a view on applications in nonlinear control theory. In particular, it introduces some elementary concepts of commutative algebra and algebraic geometry which offer a set of tools quite different from the traditional approaches to the subject matter. This text begins with the study of elementary set and map theory. Chapters 2 and 3 on group theory and rings, respectively, are included because of their important relation to linear algebra, the group of invertible linear maps (or matrices) and the ring of linear maps of a vector space. Homomorphisms and Ideals are dealt with as well at this stage. Chapter 4 is devoted to the theory of matrices and systems of linear equations. Chapter 5 gives some information on permutations, determinants and the inverse of a matrix. Chapter 6 tackles vector spaces over a field, Chapter 7 treats linear maps resp. linear transformations, and in addition the application in linear control theory of some abstract theorems such as the concept of a kernel, the image and dimension of vector spaces are illustrated. Chapter 8 considers the diagonalization of a matrix and their canonical forms. Chapter 9 provides a brief introduction to elementary methods for solving differential equations and, finally, in Chapter 10, nonlinear control theory is introduced from the point of view of differential algebra.

Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I PDF

Author: Peter Falb

Publisher: Springer

Published: 2018-08-25

Total Pages: 202

ISBN-13: 3319980262

DOWNLOAD EBOOK →

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik

Algebraic Methods for Nonlinear Control Systems

Algebraic Methods for Nonlinear Control Systems PDF

Author: Giuseppe Conte

Publisher: Springer Science & Business Media

Published: 2007-01-19

Total Pages: 183

ISBN-13: 184628595X

DOWNLOAD EBOOK →

This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.

Nonlinear Control Systems

Nonlinear Control Systems PDF

Author: G. Conte

Publisher: Springer

Published: 2014-03-12

Total Pages: 168

ISBN-13: 9781447139676

DOWNLOAD EBOOK →

This book provides a unique and alternative approach to the study of nonlinear control systems, with applications. The approach presented is based on the use of algebraic methods which are intrinsically linear, rather than differential geometric methods, which are more commonly found in other reference works on the subject. This allows the exposition to remain simple from a mathematical point of view, and accessible for everyone who has a good understanding of linear control theory. The book is divided into the following three parts: Part 1 is devoted to mathematical preliminaries and to the development of tools and methods for system analysis. Part 2 is concerned with solving specific control problems, including disturbance decoupling, non-interactive control, model matching and feedback linearization problems. Part 3 introduces differential algebraic notions and discusses their applications to nonlinear control and system theory. With numerous examples used to illustrate theoretical results, this self-contained and comprehensive volume will be of interest to all those who have a good basic knowledge of standard linear control systems.

Geometric Methods in System Theory

Geometric Methods in System Theory PDF

Author: D.Q. Mayne

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 322

ISBN-13: 9401026750

DOWNLOAD EBOOK →

Geometric Methods in System Theory In automatic control there are a large number of applications of a fairly simple type for which the motion of the state variables is not free to evolve in a vector space but rather must satisfy some constraints. Examples are numerous; in a switched, lossless electrical network energy is conserved and the state evolves on an ellipsoid surface defined by x'Qx equals a constant; in the control of finite state, continuous time, Markov processes the state evolves on the set x'x = 1, xi ~ O. The control of rigid body motions and trajectory control leads to problems of this type. There has been under way now for some time an effort to build up enough control theory to enable one to treat these problems in a more or less routine way. It is important to emphasise that the ordinary vector space-linear theory often gives the wrong insight and thus should not be relied upon.

Algebraic Methods for Nonlinear Control Systems

Algebraic Methods for Nonlinear Control Systems PDF

Author: Giuseppe Conte

Publisher: Springer

Published: 2009-10-12

Total Pages: 178

ISBN-13: 9781848005709

DOWNLOAD EBOOK →

This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.

Mathematical Control Theory

Mathematical Control Theory PDF

Author: Eduardo D. Sontag

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 543

ISBN-13: 1461205778

DOWNLOAD EBOOK →

Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.