Age Structured Epidemic Modeling

Age Structured Epidemic Modeling PDF

Author: Xue-Zhi Li

Publisher: Springer Nature

Published: 2020-05-28

Total Pages: 386

ISBN-13: 3030424960

DOWNLOAD EBOOK →

This book introduces advanced mathematical methods and techniques for analysis and simulation of models in mathematical epidemiology. Chronological age and class-age play an important role in the description of infectious diseases and this text provides the tools for the analysis of this type of partial differential equation models. This book presents general theoretical tools as well as large number of specific examples to guide the reader to develop their own tools that they may then apply to study structured models in mathematical epidemiology. The book will be a valuable addition to the arsenal of all researchers interested in developing theory or studying specific models with age structure.

Age-Structured Population Dynamics in Demography and Epidemiology

Age-Structured Population Dynamics in Demography and Epidemiology PDF

Author: Hisashi Inaba

Publisher: Springer

Published: 2017-03-15

Total Pages: 555

ISBN-13: 981100188X

DOWNLOAD EBOOK →

This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.

The Basic Approach to Age-Structured Population Dynamics

The Basic Approach to Age-Structured Population Dynamics PDF

Author: Mimmo Iannelli

Publisher: Springer

Published: 2017-08-27

Total Pages: 350

ISBN-13: 9402411461

DOWNLOAD EBOOK →

This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.

An Introduction to Mathematical Epidemiology

An Introduction to Mathematical Epidemiology PDF

Author: Maia Martcheva

Publisher: Springer

Published: 2015-10-20

Total Pages: 453

ISBN-13: 1489976124

DOWNLOAD EBOOK →

The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.

Epidemic Models

Epidemic Models PDF

Author: Denis Mollison

Publisher: Cambridge University Press

Published: 1995-07-13

Total Pages: 458

ISBN-13: 9780521475365

DOWNLOAD EBOOK →

Surveys the state of epidemic modelling, resulting from the NATO Advanced Workshop at the Newton Institute in 1993.

Dynamical Modeling and Analysis of Epidemics

Dynamical Modeling and Analysis of Epidemics PDF

Author: Zhien Ma

Publisher: World Scientific

Published: 2009

Total Pages: 513

ISBN-13: 9812797505

DOWNLOAD EBOOK →

This timely book covers the basic concepts of the dynamics of epidemic disease, presenting various kinds of models as well as typical research methods and results. It introduces the latest results in the current literature, especially those obtained by highly rated Chinese scholars. A lot of attention is paid to the qualitative analysis of models, the sheer variety of models, and the frontiers of mathematical epidemiology. The process and key steps in epidemiological modeling and prediction are highlighted, using transmission models of HIV/AIDS, SARS, and tuberculosis as application examples.

Stochastic Epidemic Models with Inference

Stochastic Epidemic Models with Inference PDF

Author: Tom Britton

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 474

ISBN-13: 3030309002

DOWNLOAD EBOOK →

Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.

Mathematical Epidemiology

Mathematical Epidemiology PDF

Author: Fred Brauer

Publisher: Springer Science & Business Media

Published: 2008-04-30

Total Pages: 415

ISBN-13: 3540789103

DOWNLOAD EBOOK →

Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).

Epidemics

Epidemics PDF

Author: Ottar N. Bjørnstad

Publisher: Springer

Published: 2018-10-30

Total Pages: 312

ISBN-13: 3319974874

DOWNLOAD EBOOK →

This book is designed to be a practical study in infectious disease dynamics. The book offers an easy to follow implementation and analysis of mathematical epidemiology. The book focuses on recent case studies in order to explore various conceptual, mathematical, and statistical issues. The dynamics of infectious diseases shows a wide diversity of pattern. Some have locally persistent chains-of-transmission, others persist spatially in ‘consumer-resource metapopulations’. Some infections are prevalent among the young, some among the old and some are age-invariant. Temporally, some diseases have little variation in prevalence, some have predictable seasonal shifts and others exhibit violent epidemics that may be regular or irregular in their timing. Models and ‘models-with-data’ have proved invaluable for understanding and predicting this diversity, and thence help improve intervention and control. Using mathematical models to understand infectious disease dynamics has a very rich history in epidemiology. The field has seen broad expansions of theories as well as a surge in real-life application of mathematics to dynamics and control of infectious disease. The chapters of Epidemics: Models and Data using R have been organized in a reasonably logical way: Chapters 1-10 is a mix and match of models, data and statistics pertaining to local disease dynamics; Chapters 11-13 pertains to spatial and spatiotemporal dynamics; Chapter 14 highlights similarities between the dynamics of infectious disease and parasitoid-host dynamics; Finally, Chapters 15 and 16 overview additional statistical methodology useful in studies of infectious disease dynamics. This book can be used as a guide for working with data, models and ‘models-and-data’ to understand epidemics and infectious disease dynamics in space and time.