Aero Engine Combustor Casing

Aero Engine Combustor Casing PDF

Author: Sashi Kanta Panigrahi

Publisher: CRC Press

Published: 2017-06-27

Total Pages: 156

ISBN-13: 1138032840

DOWNLOAD EBOOK →

The book is focused on theoretical and experimental investigation aimed at detecting and selecting proper information related to the fundamental aspect of combustion casing design,performance and life evaluation parameters. A rational approach has been adopted to the analysis domain underlying the complexities of the process.

Aero Engine Combustor Casing

Aero Engine Combustor Casing PDF

Author: Shashi Kanta Panigrahi

Publisher: CRC Press

Published: 2020-06-30

Total Pages: 156

ISBN-13: 9780367573539

DOWNLOAD EBOOK →

Present book is focused on evaluation of fatigue life of aero engine combustors through an integrated approach, which includes a pressure test facility developed in-house to carry out pressure tests on the combustor casing to meet the mandatory airworthiness requirement.

Aero Engine Combustor Casing

Aero Engine Combustor Casing PDF

Author: Sashi Kanta Panigrahi

Publisher: CRC Press

Published: 2017-06-27

Total Pages: 170

ISBN-13: 1351642839

DOWNLOAD EBOOK →

The book is focused on theoretical and experimental investigation aimed at detecting and selecting proper information related to the fundamental aspect of combustion casing design,performance and life evaluation parameters. A rational approach has been adopted to the analysis domain underlying the complexities of the process.

Fatigue Life Evaluation of an Annular Combustor Casing of a Gas Turbine Engine

Fatigue Life Evaluation of an Annular Combustor Casing of a Gas Turbine Engine PDF

Author: Niranjan Sarangi

Publisher:

Published: 2014

Total Pages: 11

ISBN-13:

DOWNLOAD EBOOK →

Structural analysis of annular combustors of aero gas turbines presents substantial challenges to engine-development establishments because of its multifunctional aspects such as complex geometry, thin wall structures, and stringent airworthiness requirements. This paper outlines an experimental methodology for fatigue life evaluation of an annular combustor casing using a closed-loop hydraulic test facility and presents results corresponding to the initial configuration. Premature fatigue failure has revealed that a design feature with a high stress concentration on the combustor casing needs to be modified. Iterative studies are taken up to overcome the design deficiency. This paper presents a unique approach whereby the experimental results for a full-scale annular combustor are correlated with numerical predictions for ensuring structural integrity in accordance with military airworthiness standards.

Gas Turbine Emissions

Gas Turbine Emissions PDF

Author: Timothy C. Lieuwen

Publisher: Cambridge University Press

Published: 2013-07-08

Total Pages: 385

ISBN-13: 052176405X

DOWNLOAD EBOOK →

The development of clean, sustainable energy systems is a preeminent issue in our time. Gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source.

Combustion Instabilities in Gas Turbine Engines

Combustion Instabilities in Gas Turbine Engines PDF

Author: Timothy C. Lieuwen

Publisher: AIAA (American Institute of Aeronautics & Astronautics)

Published: 2005

Total Pages: 688

ISBN-13:

DOWNLOAD EBOOK →

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

Technical Notes on Next Generation Aero Combustor Design-Development and Related Combustion Research

Technical Notes on Next Generation Aero Combustor Design-Development and Related Combustion Research PDF

Author: Jushan Chin

Publisher: Nova Science Publishers

Published: 2021

Total Pages: 165

ISBN-13: 9781685071097

DOWNLOAD EBOOK →

"The aim of this book is to identify that extra high-pressure ratio (such as about 70) civil aero engine low emissions combustors and extra high fuel air ratio (FAR) (such as FAR greater than 0.051) military aero engine combustors make up the next generation of aero combustors. The aero thermal design of these combustors is very different from previous combustors and the major design points are proposed. Two types of high-pressure low emissions combustor design have been suggested: one is without fuel staging and the other is with fuel staging. The high FAR combustor design is brand new. The layout of the next-generation aero combustor is very different. There are no primary holes, no intermediate holes, and no dilution holes. They all have direct mixing combustion. For low-emissions combustors, it is lean direct mixing (LDM) combustion. For high-FAR combustors, it is stoichiometric direct mixing combustion. Combustion air fraction is very high (such as greater than 75%). That will induce idle condition lean blow out (LBO) issue. The present book has proposed several design approaches to solve idle LBO issue, which are effective. Pilot fuel air combustion is designed at idle condition. For civil combustor, maximum condition is designed for low emissions, while for high FAR combustor, maximum condition is designed for non-visible smoke, low luminous flame radiation and good combustion efficiency. For each type of combustor, the fuel air module configuration is designed, which is the most essential part of combustor design. The brand-new combustor cooling design has used a compound angle tangential inlet cooling hole configuration. Such a cooling design provides high cooling effectiveness. The diffuser configuration is totally new. It is an air bleeding diffuser, directly stretching forward to contact the dome. The bled air flows to the annular channel as cooling air. Aero combustor development is discussed in this book. In particular, the combustor developments from technology readiness level (TRL) 3 to TRL level 6 have been discussed in detail. Also reported is the technology to run combustor development tests correctly. Three topics of related combustion research by the present author are summarized in the brochure. They are: a. Fuel injection and co-flowing air combination. The key point is, for next generation combustor development, the designer should not only think about atomization. The combination of fuel injection and co-flowing air should be considered together as a whole device. b. Fuel spray evaporation calculation, the key is an engineering calculation of multi-component fuel evaporation shall be used. c. Non-luminous flame radiation calculation, which has been significantly updated. The present book is a summary of the author's ten years of study on next-generation aero combustors after retirement. It represents advanced aero combustor technology level"--

Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-08-09

Total Pages: 123

ISBN-13: 0309440998

DOWNLOAD EBOOK →

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.

Environmental Impact of Aviation and Sustainable Solutions

Environmental Impact of Aviation and Sustainable Solutions PDF

Author: Ramesh K. Agarwal

Publisher: BoD – Books on Demand

Published: 2020-07-15

Total Pages: 222

ISBN-13: 1839623578

DOWNLOAD EBOOK →

Environmental Impact of Aviation and Sustainable Solutions is a compilation of review and research articles in the broad field of aviation and the environment. Over three sections and thirteen chapters, this book covers topics such as aircraft design and materials, combustor modeling, atomization, airport pollution, sonic boom and street noise pollution, emission mitigation strategies, and environmentally friendly contributions from a Russian aviation pioneer. This volume is a useful reference for both researchers and students interested in learning about various aspects of aviation and the environment