Advances in Spacecraft Attitude Control

Advances in Spacecraft Attitude Control PDF

Author: Timothy Sands

Publisher: BoD – Books on Demand

Published: 2020-01-15

Total Pages: 286

ISBN-13: 1789848024

DOWNLOAD EBOOK →

Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book.

Spacecraft Attitude Determination and Control

Spacecraft Attitude Determination and Control PDF

Author: J.R. Wertz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 877

ISBN-13: 9400999070

DOWNLOAD EBOOK →

Roger D. Werking Head, Attitude Determination and Control Section National Aeronautics and Space Administration/ Goddard Space Flight Center Extensiye work has been done for many years in the areas of attitude determination, attitude prediction, and attitude control. During this time, it has been difficult to obtain reference material that provided a comprehensive overview of attitude support activities. This lack of reference material has made it difficult for those not intimately involved in attitude functions to become acquainted with the ideas and activities which are essential to understanding the various aspects of spacecraft attitude support. As a result, I felt the need for a document which could be used by a variety of persons to obtain an understanding of the work which has been done in support of spacecraft attitude objectives. It is believed that this book, prepared by the Computer Sciences Corporation under the able direction of Dr. James Wertz, provides this type of reference. This book can serve as a reference for individuals involved in mission planning, attitude determination, and attitude dynamics; an introductory textbook for stu dents and professionals starting in this field; an information source for experimen ters or others involved in spacecraft-related work who need information on spacecraft orientation and how it is determined, but who have neither the time nor the resources to pursue the varied literature on this subject; and a tool for encouraging those who could expand this discipline to do so, because much remains to be done to satisfy future needs.

Fault-Tolerant Attitude Control of Spacecraft

Fault-Tolerant Attitude Control of Spacecraft PDF

Author: Qinglei Hu

Publisher: Elsevier

Published: 2021-06-09

Total Pages: 306

ISBN-13: 0323901247

DOWNLOAD EBOOK →

Fault-Tolerant Attitude Control of Spacecraft presents the fundamentals of spacecraft fault-tolerant attitude control systems, along with the most recent research and advanced, nonlinear control techniques. This book gives researchers a self-contained guide to the complex tasks of envisaging, designing, implementing and experimenting by presenting designs for integrated modeling, dynamics, fault-tolerant attitude control, and fault reconstruction for spacecraft. Specifically, the book gives a full literature review and presents preliminaries and mathematical models, robust fault-tolerant attitude control, fault-tolerant attitude control with actuator saturation, velocity-free fault tolerant attitude control, finite-time fault-tolerant attitude tracking control, and active fault-tolerant attitude contour. Finally, the book looks at the future of this interesting topic, offering readers a one-stop solution for those working on fault-tolerant attitude control for spacecraft. Presents the fundamentals of fault-tolerant attitude control systems for spacecraft in one practical solution Gives the latest research and thinking on nonlinear attitude control, fault tolerant control, and reliable attitude control Brings together concepts in fault control theory, fault diagnosis, and attitude control for spacecraft Covers advances in theory, technological aspects, and applications in spacecraft Presents detailed numerical and simulation results to assist engineers Offers a clear, systematic reference on fault-tolerant control and attitude control for spacecraft

Fundamentals of Spacecraft Attitude Determination and Control

Fundamentals of Spacecraft Attitude Determination and Control PDF

Author: F. Landis Markley

Publisher: Springer

Published: 2014-05-31

Total Pages: 486

ISBN-13: 1493908022

DOWNLOAD EBOOK →

This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.

Spacecraft Modeling, Attitude Determination, and Control

Spacecraft Modeling, Attitude Determination, and Control PDF

Author: Yaguang Yang

Publisher: CRC Press

Published: 2019-02-06

Total Pages: 159

ISBN-13: 0429822138

DOWNLOAD EBOOK →

This book discusses all spacecraft attitude control-related topics: spacecraft (including attitude measurements, actuator, and disturbance torques), modeling, spacecraft attitude determination and estimation, and spacecraft attitude controls. Unlike other books addressing these topics, this book focuses on quaternion-based methods because of its many merits. The book lays a brief, but necessary background on rotation sequence representations and frequently used reference frames that form the foundation of spacecraft attitude description. It then discusses the fundamentals of attitude determination using vector measurements, various efficient (including very recently developed) attitude determination algorithms, and the instruments and methods of popular vector measurements. With available attitude measurements, attitude control designs for inertial point and nadir pointing are presented in terms of required torques which are independent of actuators in use. Given the required control torques, some actuators are not able to generate the accurate control torques, therefore, spacecraft attitude control design methods with achievable torques for these actuators (for example, magnetic torque bars and control moment gyros) are provided. Some rigorous controllability results are provided. The book also includes attitude control in some special maneuvers, such as orbital-raising, docking and rendezvous, that are normally not discussed in similar books. Almost all design methods are based on state-spaced modern control approaches, such as linear quadratic optimal control, robust pole assignment control, model predictive control, and gain scheduling control. Applications of these methods to spacecraft attitude control problems are provided. Appendices are provided for readers who are not familiar with these topics.

Spacecraft Attitude Dynamics

Spacecraft Attitude Dynamics PDF

Author: Peter C. Hughes

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 594

ISBN-13: 048614013X

DOWNLOAD EBOOK →

Comprehensive coverage includes environmental torques, energy dissipation, motion equations for four archetypical systems, orientation parameters, illustrations of key concepts with on-orbit flight data, and typical engineering hardware. 1986 edition.

Advances in Spacecraft Technologies

Advances in Spacecraft Technologies PDF

Author: Jason Hall

Publisher: BoD – Books on Demand

Published: 2011-02-14

Total Pages: 612

ISBN-13: 9533075511

DOWNLOAD EBOOK →

The development and launch of the first artificial satellite Sputnik more than five decades ago propelled both the scientific and engineering communities to new heights as they worked together to develop novel solutions to the challenges of spacecraft system design. This symbiotic relationship has brought significant technological advances that have enabled the design of systems that can withstand the rigors of space while providing valuable space-based services. With its 26 chapters divided into three sections, this book brings together critical contributions from renowned international researchers to provide an outstanding survey of recent advances in spacecraft technologies. The first section includes nine chapters that focus on innovative hardware technologies while the next section is comprised of seven chapters that center on cutting-edge state estimation techniques. The final section contains eleven chapters that present a series of novel control methods for spacecraft orbit and attitude control.

Advanced Control of Aircraft, Spacecraft and Rockets

Advanced Control of Aircraft, Spacecraft and Rockets PDF

Author: Ashish Tewari

Publisher: John Wiley & Sons

Published: 2011-06-01

Total Pages: 416

ISBN-13: 1119972744

DOWNLOAD EBOOK →

Advanced Control of Aircraft, Spacecraft and Rockets introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems. Advanced Control of Aircraft, Spacecraft and Rockets features worked examples and problems at the end of each chapter as well as a number of MATLAB / Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.

Design and Global Analysis of Spacecraft Attitude Control Systems

Design and Global Analysis of Spacecraft Attitude Control Systems PDF

Author: George Meyer

Publisher:

Published: 1971

Total Pages: 60

ISBN-13:

DOWNLOAD EBOOK →

A general procedure for the design and analysis of three-axis, large-angle attitude control systems has been developed. Properties of three-dimensional rotations are used to formulate a model of such systems. The model is general in that it is based on those properties which are common to all attitude control systems, rather than on special properties of particular components. Numerical values are assigned to attitude error by means of error functions. These functions are used to construct asymptotically stable control laws. The overall (global) behavior of the system is characterized by the envelope of all time histories of attitude error generated by every possible combination of initial condition, target attitude motion, and disturbance. A method for computing upper bounds on the response envelope is presented. Applications of this method indicate that it provides a useful alternative to Liapunov analysis for the determination of system stability, responsiveness, and sensitivity to disturbances, parameter variations, and target attitude motion.