Advanced Silicon Materials for Photovoltaic Applications

Advanced Silicon Materials for Photovoltaic Applications PDF

Author: Sergio Pizzini

Publisher: John Wiley & Sons

Published: 2012-06-07

Total Pages: 412

ISBN-13: 1118312163

DOWNLOAD EBOOK →

Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Even though reports suggest that the silicon share will slowly decrease in the next twenty years, finding a way to manufacture a specific solar grade feedstock in large quantities, at a low cost while maintaining the quality needed, still remains a crucial issue. Thin film and quantum confinement-based silicon cells might be a complementary solution. Advanced Silicon Materials for Photovoltaic Applications has been designed to describe the full potentialities of silicon as a multipurpose material and covers: Physical, chemical and structural properties of silicon Production routes including the promise of low cost feedstock for PV applications Defect engineering and the role of impurities and defects Characterization techniques, and advanced analytical techniques for metallic and non-metallic impurities Thin film silicon and thin film solar cells Innovative quantum effects, and 3rd generation solar cells With contributions from internationally recognized authorities, this book gives a comprehensive analysis of the state-of-the-art of process technologies and material properties, essential for anyone interested in the application and development of photovoltaics.

Solar Silicon Processes

Solar Silicon Processes PDF

Author: Bruno Ceccaroli

Publisher: CRC Press

Published: 2016-10-03

Total Pages: 273

ISBN-13: 1498742661

DOWNLOAD EBOOK →

Polycrystalline silicon (commonly called "polysilicon") is the material of choice for photovoltaic (PV) applications. Polysilicon is the purest synthetic material on the market, though its processing through gas purification and decomposition (commonly called "Siemens" process) carries high environmental risk. While many current optoelectronic applications require high purity, PV applications do not and therefore alternate processes and materials are being explored for PV grade silicon. Solar Silicon Processes: Technologies, Challenges, and Opportunities reviews current and potential future processing technologies for PV applications of solar silicon. It describes alternative processes and issues of material purity, cost, and environmental impact. It covers limits of silicon use with respect to high-efficiency solar cells and challenges arising from R&D activities. The book also defines purity requirements and purification processes of metallurgical grade silicon (MG-Si) and examines production of solar grade silicon by novel processes directly from MG-Si and/or by decomposition of silane gas in a fluidized bed reactor (FBR). Furthermore, the book: Analyzes past research and industrial development of low-cost silicon processes in view of understanding future trends in this field. Discusses challenges and probability of success of various solar silicon processes. Covers processes that are more environmentally sensitive. Describes limits of silicon use with respect to high-efficiency solar cells and challenges arising from R&D activities. Defines purity requirements and purification processes of MG-Si. Examines production of solar grade silicon directly from MG-Si.

Materials Science Reading Sampler

Materials Science Reading Sampler PDF

Author: Wiley

Publisher: John Wiley & Sons

Published: 2013-02-15

Total Pages: 340

ISBN-13: 111860590X

DOWNLOAD EBOOK →

The 2013 Materials Science eBook Sampler includes select material from seven Materials Science titles. Titles are from a number of Wiley imprints including Wiley, Wiley-VCH, Wiley-American Ceramic Society, Wiley-Scrivener and Wiley-The Minerals, Metals and Materials Society. The material that is included for each selection is the book’s full Table of Contents as well as a sample chapter. If you would like to read more from these books, you can purchase the full book or e-book at your favorite online retailer.

Physical Chemistry of Semiconductor Materials and Processes

Physical Chemistry of Semiconductor Materials and Processes PDF

Author:

Publisher: John Wiley & Sons

Published: 2015-08-17

Total Pages: 416

ISBN-13: 1118514602

DOWNLOAD EBOOK →

The development of solid state devices began a little more than a century ago, with the discovery of the electrical conductivity of ionic solids. Today, solid state technologies form the background of the society in which we live. The aim of this book is threefold: to present the background physical chemistry on which the technology of semiconductor devices is based; secondly, to describe specific issues such as the role of defects on the properties of solids, and the crucial influence of surface properties; and ultimately, to look at the physics and chemistry of semiconductor growth processes, both at the bulk and thin-film level, together with some issues relating to the properties of nano-devices. Divided into five chapters, it covers: Thermodynamics of solids, including phases and their properties and structural order Point defects in semiconductors Extended defects in semiconductors and their interactions with point defects and impurities Growth of semiconductor materials Physical chemistry of semiconductor materials processing With applications across all solid state technologies,the book is useful for advanced students and researchers in materials science, physics, chemistry, electrical and electronic engineering. It is also useful for those in the semiconductor industry.

Advanced Silicon & Semiconducting Silicon-Alloy Based Materials & Devices

Advanced Silicon & Semiconducting Silicon-Alloy Based Materials & Devices PDF

Author: Jo Nijs

Publisher: CRC Press

Published: 2021-05-30

Total Pages: 488

ISBN-13: 1000445062

DOWNLOAD EBOOK →

One of the first books to cover advanced silicon-based technologies, Advanced Silicon and Semiconducting Silicon Alloy-Based Materials and Devices presents important directions for research into silicon, its alloy-based semiconducting devices, and its development in commercial applications. The first section deals with single/mono crystalline silicon, focusing on the effects of heavy doping; the structure and electronic properties of defects and their impact on devices; the MBE of silicon, silicon alloys, and metals; CVD techniques for silicon and silicon germanium; the material properties of silicon germanium strained layers; silicon germanium heterojunction bipolar applications; FETs, IR detectors, and resonant tunneling devices in silicon, silicon germanium, and d-doped silicon; and the fascinating properties of crystalline silicon carbide and its applications. The second section explores polycrystalline silicon. It examines large grain polysilicon substrates for solar cells; the properties, analysis, and modeling of polysilicon TFTs; the technology of polysilicon TFTs in LCD displays; and the use of polycrystalline silicon and its alloys in VLSI applications. With contributors from leading academic and industrial research centers, this book provides wide coverage of fabrication techniques, material properties, and device applications.

Defects in Nanocrystals

Defects in Nanocrystals PDF

Author: Sergio Pizzini

Publisher: CRC Press

Published: 2020-05-11

Total Pages: 295

ISBN-13: 1000066134

DOWNLOAD EBOOK →

Defects in Nanocrystals: Structural and Physico-Chemical Aspects discusses the nature of semiconductor systems and the effect of the size and shape on their thermodynamic and optoelectronic properties at the mesoscopic and nanoscopic levels. The nanostructures considered in this book are individual nanometric crystallites, nanocrystalline films, and nanowires of which the thermodynamic, structural, and optical properties are discussed in detail. The work: Outlines the influence of growth processes on their morphology and structure Describes the benefits of optical spectroscopies in the understanding of the role and nature of defects in nanostructured semiconductors Considers the limits of nanothermodynamics Details the critical role of interfaces in nanostructural behavior Covers the importance of embedding media in the physico-chemical properties of nanostructured semiconductors Explains the negligible role of core point defects vs. surface and interface defects Written for researchers, engineers, and those working in the physical and physicochemical sciences, this work comprehensively details the chemical, structural, and optical properties of semiconductor nanostructures for the development of more powerful and efficient devices.

The Growth of Silicon Sheets for Photovoltaic Applications

The Growth of Silicon Sheets for Photovoltaic Applications PDF

Author: Thomas Surek

Publisher:

Published: 1980

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK →

The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The "fast" growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.

Silicon Processing for Photovoltaics II

Silicon Processing for Photovoltaics II PDF

Author: C.P. Khattak

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 425

ISBN-13: 0080983669

DOWNLOAD EBOOK →

The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the commercial production for multicrystalline silicon ingots and ribbon; epitaxial solar cell fabrication; metallurgical approaches to producing low-cost meltstock; the non-conventional bifacial solar cell approach.

Photovoltaic Materials

Photovoltaic Materials PDF

Author: Bube Richard H

Publisher: World Scientific

Published: 1998-05-30

Total Pages: 292

ISBN-13: 1911298747

DOWNLOAD EBOOK →

Research and development of photovoltaic solar cells is playing an ever larger practical role in energy supply and ecological conservation all over the world. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on exciting developments in the last decade. It describes the properties of the materials that play an important role in photovoltaic applications, the solar cell structures in which they are used, and the experimental and theoretical developments that have led to the most promising contenders./a