Advanced Dielectric Materials for Electrostatic Capacitors

Advanced Dielectric Materials for Electrostatic Capacitors PDF

Author: Qi Li

Publisher: Energy Engineering

Published: 2020-09

Total Pages: 448

ISBN-13: 9781785619885

DOWNLOAD EBOOK →

This book provides an overview of key dielectric materials for capacitor technology. It covers preparation and characterization of state-of-the art dielectric materials including ceramics, polymers and polymer nanocomposites, for popular applications including energy storage, microwave communication and multi-layer ceramic capacitors.

Progress In Advanced Dielectrics

Progress In Advanced Dielectrics PDF

Author: Li Jin

Publisher: World Scientific

Published: 2020-03-20

Total Pages: 510

ISBN-13: 9811210446

DOWNLOAD EBOOK →

Dielectrics is becoming increasingly important due to the rapid developments in electronics, optoelectronics, photonics and nanotechnology. In the past two decades, research on advanced dielectric materials and related applications has undergone an accelerated growth, due in larger part to the discovery of the superior piezoelectric properties in relaxor single crystals, the development of the lead-free piezoelectric/ferroelectric materials and the renaissance of the multiferroics.This book contains 9 feature articles which, together, provide a comprehensive account on the current state of advanced dielectrics and related phenomena. The first two articles present fundamental knowledge related to the characterization of ferroelectric hysteresis, which is the most widely used method to learn the ferroelectricity experimentally. The latest research progress in relaxor ferroelectric is given in the next two articles. The last five articles are dedicated to the multi-functionality of advanced dielectrics, with emphasis on multiferroic magnetoelectric composites, lead-free piezoceramics, pyroelectric/electrocaloric materials, polymer-based dielectrics, and flexible nanodielectrics.

Ceramic Dielectrics and Capacitors

Ceramic Dielectrics and Capacitors PDF

Author: J.M. Herbert

Publisher: CRC Press

Published: 1985-01-01

Total Pages: 288

ISBN-13: 9782881240454

DOWNLOAD EBOOK →

Detailed study of the composition, physical properties, and manufacturing methods of ceramic dielectrics and capacitors in light of recent commercial developments and influences. Covers the essential theory and applications for electrical engineers wanting informed insight into the characteristics, advantages, and limitations of this class of capacitors, and for ceramicists seeking to improve their electrical expertise.

Advances in Dielectric Materials and Electronic Devices

Advances in Dielectric Materials and Electronic Devices PDF

Author: K. M. Nair

Publisher: John Wiley & Sons

Published: 2012-04-11

Total Pages: 323

ISBN-13: 1118408179

DOWNLOAD EBOOK →

This proceedings contains papers presented at the Advanced Dielectric Materials: Design, Preparation, Processing and Applications; and Advanced Dielectrics for Wireless Communications symposia. Topics include design of material, materials synthesis and processing, processing-microstructure-property relationship, multilayer device materials, thin and thick films, device applications, low temperature co-fired ceramics (LTCC)for multilayer devices, microwave dielectric materials and much more.

Dielectric Polymer Materials for High-Density Energy Storage

Dielectric Polymer Materials for High-Density Energy Storage PDF

Author: Zhi-Min Dang

Publisher: William Andrew

Published: 2018-06-13

Total Pages: 500

ISBN-13: 0128132167

DOWNLOAD EBOOK →

Dielectric Polymer Materials for High-Density Energy Storage begins by introducing the fundamentals and basic theories on the dielectric behavior of material. It then discusses key issues on the design and preparation of dielectric polymer materials with strong energy storage properties, including their characterization, properties and manipulation. The latest methods, techniques and applications are explained in detail regarding this rapidly developing area. The book will support the work of academic researchers and graduate students, as well as engineers and materials scientists working in industrial research and development. In addition, it will be highly valuable to those directly involved in the fabrication of capacitors in industry, and to researchers across the areas of materials science, polymer science, materials chemistry, and nanomaterials. Focuses on how to design and prepare dielectric polymer materials with strong energy storage properties Includes new techniques for adjusting the properties of dielectric polymer materials Presents a thorough review of the state-of-the-art in the field of dielectric polymer materials, providing valuable insights into potential avenues of development

Performance of Aqueous Ion Solution/Tube-Super Dielectric Material-Based Capacitors as a Function of Discharge Time

Performance of Aqueous Ion Solution/Tube-Super Dielectric Material-Based Capacitors as a Function of Discharge Time PDF

Author: Steven M. Lombardo

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

The discharge time dependence of key parameters of electrostatic capacitors employing a dielectric composed of the oxide film formed on titanium via anodization, saturated with various aqueous ion solutions, that is tube-super dielectric materials (T-SDM), was thoroughly documented for the first time. The capacitance, dielectric constant, and energy density of novel paradigm supercapacitors (NPS) based on T-SDM saturated with various concentrations of NaNO3, NH4Cl, or KOH were all found to roll-off with decreasing discharge time in a fashion well described by simple power law relations. In contrast, power density, also well described by a simple power law, was found to increase with decreasing discharge time, in fact nearly reaching 100 W/cm3 for both 30 wt% KOH and NaNO3 solution-based capacitors at 0.01 s, excellent performance for pulsed power. For all capacitors, the dielectric constant was tested, which was greater than 105 for discharge times >0.01 s, confirming the materials are in fact T-SDM. The energy density for most of the capacitors was greater than 80 J/cm3 of dielectric at a discharge time of 100 s, once again demonstrating that these capacitors are competitive for energy storage not only with existing commercial supercapacitors but also with the best prototype carbon-based supercapacitors.

Handbook of Low and High Dielectric Constant Materials and Their Applications, Two-Volume Set

Handbook of Low and High Dielectric Constant Materials and Their Applications, Two-Volume Set PDF

Author: Hari Singh Nalwa

Publisher: Elsevier

Published: 1999-09-07

Total Pages: 562

ISBN-13: 0080533531

DOWNLOAD EBOOK →

Recent developments in microelectronics technologies have created a great demand for interlayer dielectric materials with a very low dielectric constant. They will play a crucial role in the future generation of IC devices (VLSI/UISI and high speed IC packaging). Considerable efforts have been made to develop new low as well as high dielectric constant materials for applications in electronics industries. Besides achieving either low or high dielectric constants, other materials' properties such as good processability, high mechanical strength, high thermal and environmental stability, low thermal expansion, low current leakage, low moisture absorption, corrosion resistant, etc., are of equal importance. Many chemical and physical strategies have been employed to get desired dielectric materials with high performance. This is a rapidly growing field of science--both in novel materials and their applications to future packing technologies. The experimental data on inorganic and organic materials having low or high dielectric constant remail scattered in the literature. It is timely, therfore, to consolidate the current knowledge on low and high dielectric constant materials into a sigle reference source. Handbook of Low and High Dielectric Constant Materials and Their Applications is aimed at bringing together under a sigle cover (in two volumes) all low and high dielectric constant materials currently studied in academic and industrial research covering all spects of inorgani an organic materials from their synthetic chemistry, processing techniques, physics, structure-property relationship to applications in IC devices. This book will summarize the current status of the field covering important scientific developments made over the past decade with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source for all those interested in low and high dielectric constant material.

Dielectric Materials for Electrical Engineering

Dielectric Materials for Electrical Engineering PDF

Author: Juan Martinez-Vega

Publisher: John Wiley & Sons

Published: 2013-03-04

Total Pages: 443

ISBN-13: 1118619781

DOWNLOAD EBOOK →

The object of this book is to provide a comprehensive reference source for the numerous scientific communities (engineers, researchers, students, etc.) in various disciplines which require detailed information in the field of dielectric materials. Part 1 focuses on physical properties, electrical ageing, and modeling - including topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and end of life (EOL) models, and dielectric experimental characterization. Part 2 examines applications of specific relevance to dielectric materials: insulating oils for transformers, electro-rheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric polymers.

University Physics

University Physics PDF

Author: Samuel J. Ling

Publisher:

Published: 2017-12-19

Total Pages: 818

ISBN-13: 9789888407613

DOWNLOAD EBOOK →

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves

A Materials Genome Approach to the Design, Synthesis, and Testing of High Energy Density Dielectric Materials for Capacitor Applications

A Materials Genome Approach to the Design, Synthesis, and Testing of High Energy Density Dielectric Materials for Capacitor Applications PDF

Author: Gregory Treich

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

The rapid implementation and improvement of renewable energy technologies require advanced dielectric materials to enable capacitive energy storage under high fields. Since capacitors are among the most pervasive electronic device in many of these systems, my search for improved dielectrics focused on the application of film capacitors. To overcome these current problems, new polymers need to be developed that can serve as the dielectric material in electronic devices. Such a comprehensive search requires careful prior planning to ensure that effort is not needlessly wasted and thus a rational co-design approach was developed. Through this approach, high-throughput computational predictions are used to guide experimental synthesis so that the most likely candidates can be made and characterized first. Through a feedback loop, these real-world results are returned to the computationalists to improve their search to yield better informed suggestions. The result of this approach is the selection of several polymers as candidates for dielectric materials. Those polymer candidates were then studied in-depth to understand how various polarization mechanisms would influence their dielectric response. Computational methods such as molecular dynamics, density functional theory, and machine learning were used to gather deeper insight and help understand experimental results. Ultimately, by exploiting these polarization mechanisms, polymers with high dielectric constants, breakdown strengths, and energy densities could be produced.