Advanced Battery Materials

Advanced Battery Materials PDF

Author: Chunwen Sun

Publisher: John Wiley & Sons

Published: 2019-03-26

Total Pages: 654

ISBN-13: 1119407702

DOWNLOAD EBOOK →

This book details the latest R&D in electrochemical energy storage technologies for portable electronics and electric vehicle applications. During the past three decades, great progress has been made in R & D of various batteries in terms of energy density increase and cost reduction. One of the biggest challenges is increasing the energy density to achieve longer endurance time. In this book, recent research and development in advanced electrode materials for electrochemical energy storage devices is covered. Topics covered in this important book include: Carbon anode materials for sodium-ion batteries Lithium titanate-based lithium-ion batteries Rational material design and performance optimization of transition metal oxide-based lithium ion battery anodes Effects of graphene on the electrochemical properties of the electrode of lithium ion batteries Silicon-based lithium-ion battery anodes Mo-based anode materials for alkali metal ion batteries Lithium-sulfur batteries Graphene in Lithium-Ion/Lithium-Sulfur Batteries Graphene-ionic liquid supercapacitors Battery electrodes based on carbon species and conducting polymers Doped graphene for electrochemical energy storage systems Processing of graphene oxide for enhanced electrical properties

Advanced Battery Technologies

Advanced Battery Technologies PDF

Author: Manuela González

Publisher: MDPI

Published: 2021-08-31

Total Pages: 190

ISBN-13: 3036509224

DOWNLOAD EBOOK →

In recent years, lithium-ion batteries (LIBs) have been increasingly contributing to the development of novel engineering systems with energy storage requirements. LIBs are playing an essential role in our society, as they are being used in a wide variety of applications, ranging from consumer electronics, electric mobility, renewable energy storage, biomedical applications, or aerospace systems. Despite the remarkable achievements and applicability of LIBs, there are several features within this technology that require further research and improvements. In this book, a collection of 10 original research papers addresses some of those key features, including: battery testing methodologies, state of charge and state of health monitoring, and system-level power electronics applications. One key aspect to emphasize when it comes to this book is the multidisciplinary nature of the selected papers. The presented research was developed at university departments, institutes and organizations of different disciplines, including Electrical Engineering, Control Engineering, Computer Science or Material Science, to name a few examples. The overall result is a book that represents a coherent collection of multidisciplinary works within the prominent field of LIBs.

Effectiveness of the United States Advanced Battery Consortium as a Government-Industry Partnership

Effectiveness of the United States Advanced Battery Consortium as a Government-Industry Partnership PDF

Author: Committee to Review the U.S. Advanced Battery Consortium's Electric Vehicle Battery Research and Development Project Selection Process

Publisher: National Academies Press

Published: 1998-08-28

Total Pages: 90

ISBN-13: 0309522390

DOWNLOAD EBOOK →

This study by the National Research Council (NRC) was requested by DOE's Office of Advanced Automotive Technologies. The study focuses on the processes used by the USABC to select, evaluate, and manage R&D projects on EV batteries in Phases I and II of the program.

Advanced Batteries

Advanced Batteries PDF

Author: Robert Huggins

Publisher: Springer Science & Business Media

Published: 2008-11-09

Total Pages: 491

ISBN-13: 0387764240

DOWNLOAD EBOOK →

Storage and conversion are critical components of important energy-related technologies. "Advanced Batteries: Materials Science Aspects" employs materials science concepts and tools to describe the critical features that control the behavior of advanced electrochemical storage systems. This volume focuses on the basic phenomena that determine the properties of the components, i.e. electrodes and electrolytes, of advanced systems, as well as experimental methods used to study their critical parameters. This unique materials science approach utilizes concepts and methodologies different from those typical in electrochemical texts, offering a fresh, fundamental and tutorial perspective of advanced battery systems. Graduate students, scientists and engineers interested in electrochemical energy storage and conversion will find "Advanced Batteries: Materials Science Aspects" a valuable reference.

Electric Vehicles

Electric Vehicles PDF

Author: DIANE Publishing Company

Publisher: DIANE Publishing

Published: 1996-02

Total Pages: 47

ISBN-13: 0788127438

DOWNLOAD EBOOK →

In early 1991, the three domestic auto companies formed a partnership known as the U.S. Advanced Battery Consortium (USABC) to jointly sponsor advanced battery research. Later that year, the U.S. Dept. of Energy (DOE) and representatives of the electric utility industry agreed to work together with the consort. This report determines 1. the progress that the USABC has made toward reaching its long-term and mid-term goals; 2. the funding that has been spent as of FY 1995 and the additional amounts, if any, that will be needed; and 3. the role of the DoE in managing the consortium.

Advanced Battery Management Technologies for Electric Vehicles

Advanced Battery Management Technologies for Electric Vehicles PDF

Author: Rui Xiong

Publisher: John Wiley & Sons

Published: 2019-02-26

Total Pages: 292

ISBN-13: 1119481643

DOWNLOAD EBOOK →

A comprehensive examination of advanced battery management technologies and practices in modern electric vehicles Policies surrounding energy sustainability and environmental impact have become of increasing interest to governments, industries, and the general public worldwide. Policies embracing strategies that reduce fossil fuel dependency and greenhouse gas emissions have driven the widespread adoption of electric vehicles (EVs), including hybrid electric vehicles (HEVs), pure electric vehicles (PEVs) and plug-in electric vehicles (PHEVs). Battery management systems (BMSs) are crucial components of such vehicles, protecting a battery system from operating outside its Safe Operating Area (SOA), monitoring its working conditions, calculating and reporting its states, and charging and balancing the battery system. Advanced Battery Management Technologies for Electric Vehicles is a compilation of contemporary model-based state estimation methods and battery charging and balancing techniques, providing readers with practical knowledge of both fundamental concepts and practical applications. This timely and highly-relevant text covers essential areas such as battery modeling and battery state of charge, energy, health and power estimation methods. Clear and accurate background information, relevant case studies, chapter summaries, and reference citations help readers to fully comprehend each topic in a practical context. Offers up-to-date coverage of modern battery management technology and practice Provides case studies of real-world engineering applications Guides readers from electric vehicle fundamentals to advanced battery management topics Includes chapter introductions and summaries, case studies, and color charts, graphs, and illustrations Suitable for advanced undergraduate and graduate coursework, Advanced Battery Management Technologies for Electric Vehicles is equally valuable as a reference for professional researchers and engineers.

Behaviour of Lithium-Ion Batteries in Electric Vehicles

Behaviour of Lithium-Ion Batteries in Electric Vehicles PDF

Author: Gianfranco Pistoia

Publisher: Springer

Published: 2018-02-10

Total Pages: 344

ISBN-13: 3319699504

DOWNLOAD EBOOK →

This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles.

Battery Technology for Electric Vehicles

Battery Technology for Electric Vehicles PDF

Author: Albert N. Link

Publisher: Routledge

Published: 2015-04-10

Total Pages: 163

ISBN-13: 1317608682

DOWNLOAD EBOOK →

Electric drive vehicles (EDVs) are seen on American roads in increasing numbers. Related to this market trend and critical for it to increase are improvements in battery technology. Battery Technology for Electric Vehicles examines in detail at the research support from the U.S. Department of Energy (DOE) for the development of nickel-metal-hydride (NiMH) and lithium-ion (Li-ion) batteries used in EDVs. With public support comes accountability of the social outcomes associated with public investments. The book overviews DOE investments in advanced battery technology, documents the adoption of these batteries in EDVs on the road, and calculates the economic benefits associated with these improved technologies. It provides a detailed global evaluation of the net social benefits associated with DOEs investments, the results of the benefit-to-cost ratio of over 3.6-to-1, and the life-cycle approach that allows adopted EDVs to remain on the road over their expected future life, thus generating economic and environmental health benefits into the future.