Adaptive and Fault-Tolerant Control of Underactuated Nonlinear Systems

Adaptive and Fault-Tolerant Control of Underactuated Nonlinear Systems PDF

Author: Jiangshuai Huang

Publisher: CRC Press

Published: 2017-12-22

Total Pages: 244

ISBN-13: 1351613243

DOWNLOAD EBOOK →

The purpose of the book is to provide an exposition of recently developed adaptive and fault-tolerant control of underactuated nonlinear systems. Underactuated systems are abundant in real life, ranging from landing vehicles to surface ships and underwater vehicles to spacecrafts. For the tracking and stabilization control of underactuated mechanical systems, many methodologies have been proposed. However, a number of important issues deserve further investigation. In response to these issues, four important problems are solved in this book, including control of underactuated nonlinear systems with input saturation, output-feedback control in the presence of parametric uncertainties, fault-tolerant control of underactuated ships with or without actuator redundancy, and adaptive control of multiple underactauted nonlinear systems, including formation control and flocking control of multiple underactuated systems.

Fault Diagnosis and Fault-Tolerant Control Based on Adaptive Control Approach

Fault Diagnosis and Fault-Tolerant Control Based on Adaptive Control Approach PDF

Author: Qikun Shen

Publisher: Springer

Published: 2017-02-14

Total Pages: 250

ISBN-13: 3319525301

DOWNLOAD EBOOK →

This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering.

Fault Detection and Fault-Tolerant Control for Nonlinear Systems

Fault Detection and Fault-Tolerant Control for Nonlinear Systems PDF

Author: Linlin Li

Publisher: Springer

Published: 2016-02-19

Total Pages: 192

ISBN-13: 3658130202

DOWNLOAD EBOOK →

Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes.

Fault Diagnosis and Fault-tolerant Control in Nonlinear Systems

Fault Diagnosis and Fault-tolerant Control in Nonlinear Systems PDF

Author: Xiaodong Zhang

Publisher:

Published: 2002

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Fault-tolerance is an essential property of many modern intelligent control systems. This dissertation presents a general framework for fault diagnosis and fault-tolerant control in nonlinear dynamical systems in the presence of possibly unstructured modeling uncertainty. The overall architecture is based on a learning approach, where the unknown fault is estimated using adaptive and on-line approximation techniques. First, the problem of fault detection and isolation in nonlinear uncertain systems is investigated. A novel fault isolation scheme is presented with its robustness and sensitivity properties enhanced by the use of adaptive thresholds in the residual evaluation stage. The fault isolation scheme is rigorously analyzed for its fault isolability condition and fault isolation time. Then we integrate the fault diagnosis (fault detection and isolation) scheme with fault-tolerant control design. Based on the fault information obtained during the diagnosis procedure, the system controller is reconfigured after fault detection and fault isolation, respectively, to compensate the effects of the fault. The closed-loop stability of the integrated fault-tolerant control system is established for different modes of the controlled plant. The effectiveness of the proposed fault diagnosis and fault-tolerant control scheme is illustrated via simulations in the three-tank system, a rigid-link robotic manipulator and the van der Pol oscillator system.

Control of Nonlinear Systems

Control of Nonlinear Systems PDF

Author: Yongduan Song

Publisher: CRC Press

Published: 2024-08-14

Total Pages: 327

ISBN-13: 1040098754

DOWNLOAD EBOOK →

The book Control of Nonlinear Systems–Stability and Performance fills a crucial gap in the field of nonlinear control systems by providing a comprehensive yet accessible treatment of the subject. Unlike many existing texts that are either too complex for beginners or omit essential topics, this book strikes the right balance of mathematical rigor and practicality. The main objective of the book is to simplify and unify the existing techniques for designing and analyzing control systems for nonlinear systems. It aims to alleviate confusion and difficulty in understanding these methods, making it an invaluable resource for students, researchers, and practitioners in the field. By presenting the material in a tutorial manner, the book enhances the reader's understanding of the design and analysis of a wide range of control methods for nonlinear systems. The emphasis on stability and performance highlights the practical relevance of the concepts discussed in the book. Overall, Control of Nonlinear Systems–Stability and Performance is a valuable contribution to the field of nonlinear control systems. Its emphasis on practical applications and its accessible presentation make it an indispensable resource for engineers seeking to enhance their knowledge and skills in this important area of control theory.

Distributed Adaptive Consensus Control of Uncertain Multi-Agent Systems

Distributed Adaptive Consensus Control of Uncertain Multi-Agent Systems PDF

Author: Wei Wang

Publisher: CRC Press

Published: 2024-08-15

Total Pages: 219

ISBN-13: 1040093795

DOWNLOAD EBOOK →

Multi-agent systems are special networked systems full of research interest and practical sense, which are abundant in real life, ranging from mobile robot networks, intelligent transportation management, to multiple spacecraft, surveillance and monitoring. Consensus control is one of the most typical and hot research issues for multi-agent systems. Distributed Adaptive Consensus Control of Uncertain Multi-agent Systems provides innovative technologies to design and analyze distributed adaptive consensus for multi-agent systems with model uncertainties. Based on the basic graph theory and adaptive backstepping control, this monograph: · Describes the state of the art on distributed adaptive control, finite-time consensus control and event-triggered consensus control · Studies distributed adaptive consensus under directed communication graph condition: the methods with linearly parametric reference, hierarchical decomposition, and design of auxiliary filers · Explores adaptive finite-time consensus for uncertain nonlinear systems · Considers distributed adaptive consensus with event-triggered communication via state feedback and output feedback · Investigates distributed adaptive formation control of nonholonomic mobile robots with experimental verification · Provides distributed adaptive attitude synchronization control schemes for multiple spacecraft with event-triggered communication Distributed Adaptive Consensus Control of Uncertain Multi-agent Systems can help engineering students and professionals to efficiently learn distributed adaptive control design tool for handling uncertain multi-agent systems with directed communication graph, guaranteeing finite-time convergence and saving communication resources.

Adaptive Control of Dynamic Systems with Uncertainty and Quantization

Adaptive Control of Dynamic Systems with Uncertainty and Quantization PDF

Author: Jing Zhou

Publisher: CRC Press

Published: 2021-12-15

Total Pages: 256

ISBN-13: 1000487768

DOWNLOAD EBOOK →

This book presents a series of innovative technologies and research results on adaptive control of dynamic systems with quantization, uncertainty, and nonlinearity, including the theoretical success and practical development such as the approaches for stability analysis, the compensation of quantization, the treatment of subsystem interactions, and the improvement of system tracking and transient performance. Novel solutions by adopting backstepping design tools to a number of hotspots and challenging problems in the area of adaptive control are provided. In the first three chapters, the general design procedures and stability analysis of backstepping controllers and the basic descriptions and properties of quantizers are introduced as preliminary knowledge for this book. In the remainder of this book, adaptive control schemes are introduced to compensate for the effects of input quantization, state quantization, both input and state/output quantization for uncertain nonlinear systems and are applied to helicopter systems and DC Microgrid. Discussion remarks are provided in each chapter highlighting new approaches and contributions to emphasize the novelty of the presented design and analysis methods. Simulation results are also given in each chapter to show the effectiveness of these methods. This book is helpful to learn and understand the fundamental backstepping schemes for state feedback control and output feedback control. It can be used as a reference book or a textbook on adaptive quantized control for students with some background in feedback control systems. Researchers, graduate students, and engineers in the fields of control, information, and communication, electrical engineering, mechanical engineering, computer science, and others will benefit from this book.

Optimal Event-Triggered Control Using Adaptive Dynamic Programming

Optimal Event-Triggered Control Using Adaptive Dynamic Programming PDF

Author: Sarangapani Jagannathan

Publisher: CRC Press

Published: 2024-06-21

Total Pages: 348

ISBN-13: 1040049168

DOWNLOAD EBOOK →

Optimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on linear and nonlinear systems, NCS, networked imperfections, distributed systems, adaptive dynamic programming and optimal control, stability theory, and optimal adaptive event-triggered controller design in continuous-time and discrete-time for linear, nonlinear and distributed systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for infinite horizons. The text then: Introduces event triggered control of linear and nonlinear systems, describing the design of adaptive controllers for them Presents neural network-based optimal adaptive control and game theoretic formulation of linear and nonlinear systems enclosed by a communication network Addresses the stochastic optimal control of linear and nonlinear NCS by using neuro dynamic programming Explores optimal adaptive design for nonlinear two-player zero-sum games under communication constraints to solve optimal policy and event trigger condition Treats an event-sampled distributed linear and nonlinear systems to minimize transmission of state and control signals within the feedback loop via the communication network Covers several examples along the way and provides applications of event triggered control of robot manipulators, UAV and distributed joint optimal network scheduling and control design for wireless NCS/CPS in order to realize industry 4.0 vision An ideal textbook for senior undergraduate students, graduate students, university researchers, and practicing engineers, Optimal Event Triggered Control Design using Adaptive Dynamic Programming instills a solid understanding of neural network-based optimal controllers under event-sampling and how to build them so as to attain CPS or Industry 4.0 vision.

Reconfigurable Control of Nonlinear Dynamical Systems

Reconfigurable Control of Nonlinear Dynamical Systems PDF

Author: Jan H. Richter

Publisher: Springer Science & Business Media

Published: 2011-01-16

Total Pages: 299

ISBN-13: 3642176275

DOWNLOAD EBOOK →

This research monograph summarizes solutions to reconfigurable fault-tolerant control problems for nonlinear dynamical systems that are based on the fault-hiding principle. It emphasizes but is not limited to complete actuator and sensor failures. In the first part, the monograph starts with a broad introduction of the control reconfiguration problems and objectives as well as summaries and explanations of solutions for linear dynamical systems. The solution is always a reconfiguration block, which consists of linear virtual actuators in the case of actuator faults and linear virtual sensors in the case of sensor faults. The main advantage of the fault-hiding concept is the reusability of the nominal controller, which remains in the loop as an active system while the virtual actuator and sensor adapt the control input and the measured output to the fault scenario. The second and third parts extend virtual actuators and virtual sensors towards the classes of Hammerstein-Wiener systems and piecewise affine systems. The main analyses concern stability recovery, setpoint tracking recovery, and performance recovery as reconfiguration objectives. The fourth part concludes the monograph with descriptions of practical implementations and case studies. The book is primarily intended for active researchers and practicing engineers in the field of fault-tolerant control. Due to many running examples it is also suitable for interested graduate students.