Acoustics and Aerodynamic Sound

Acoustics and Aerodynamic Sound PDF

Author: Michael Howe

Publisher: Cambridge University Press

Published: 2015

Total Pages: 311

ISBN-13: 1107044405

DOWNLOAD EBOOK →

This book provides an introductory account of the theory of sound production and propagation and its interactions with solid structures. It includes general theory, diffraction and scattering theory, aerodynamic sound and fluid-structure-acoustic interactions, and a chapter of worked examples. It is intended for a one-semester course on acoustics at the advanced undergraduate or graduate level.

Acoustics of Fluid-Structure Interactions

Acoustics of Fluid-Structure Interactions PDF

Author: M. S. Howe

Publisher: Cambridge University Press

Published: 1998-08-13

Total Pages: 572

ISBN-13: 0521633206

DOWNLOAD EBOOK →

A reference for analytical methods for modelling acoustic problems, a repository of known results and methods in the theory of aerodynamic sound, and a graduate-level textbook.

Aerodynamic Noise

Aerodynamic Noise PDF

Author: Tarit Bose

Publisher: Springer

Published: 2014-12-13

Total Pages: 0

ISBN-13: 9781493901968

DOWNLOAD EBOOK →

Aerodynamic Noise extensively covers the theoretical basis and mathematical modeling of sound, especially the undesirable sounds produced by aircraft. This noise could come from an aircraft’s engine—propellers, fans, combustion chamber, jets—or the vehicle itself—external surfaces—or from sonic booms. The majority of the sound produced is due to the motion of air and its interaction with solid boundaries, and this is the main discussion of the book. With problem sets at the end of each chapter, Aerodynamic Noise is ideal for graduate students of mechanical and aerospace engineering. It may also be useful for designers of cars, trains, and wind turbines.

Computational Aeroacoustics

Computational Aeroacoustics PDF

Author: Jay C. Hardin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 525

ISBN-13: 1461383420

DOWNLOAD EBOOK →

Computational aeroacoustics is rapidly emerging as an essential element in the study of aerodynamic sound. As with all emerging technologies, it is paramount that we assess the various opportuni ties and establish achievable goals for this new technology. Essential to this process is the identification and prioritization of fundamental aeroacoustics problems which are amenable to direct numerical siIn ulation. Questions, ranging from the role numerical methods play in the classical theoretical approaches to aeroacoustics, to the correct specification of well-posed numerical problems, need to be answered. These issues provided the impetus for the Workshop on Computa tional Aeroacoustics sponsored by ICASE and the Acoustics Division of NASA LaRC on April 6-9, 1992. The participants of the Work shop were leading aeroacousticians, computational fluid dynamicists and applied mathematicians. The Workshop started with the open ing remarks by M. Y. Hussaini and the welcome address by Kristin Hessenius who introduced the keynote speaker, Sir James Lighthill. The keynote address set the stage for the Workshop. It was both an authoritative and up-to-date discussion of the state-of-the-art in aeroacoustics. The presentations at the Workshop were divided into five sessions - i) Classical Theoretical Approaches (William Zorumski, Chairman), ii) Mathematical Aspects of Acoustics (Rodolfo Rosales, Chairman), iii) Validation Methodology (Allan Pierce, Chairman), iv) Direct Numerical Simulation (Michael Myers, Chairman), and v) Unsteady Compressible Flow Computa tional Methods (Douglas Dwoyer, Chairman).

Large-Eddy Simulation for Acoustics

Large-Eddy Simulation for Acoustics PDF

Author: Claus Wagner

Publisher: Cambridge University Press

Published: 2007-01-15

Total Pages: 389

ISBN-13: 1139463160

DOWNLOAD EBOOK →

Noise around airports, trains, and industries attracts environmental concern and regulation. Large-eddy simulation (LES) is used for noise-reduced design and acoustical research. This 2007 book, by 30 experts, presents the theoretical background of acoustics and LES, and details about numerical methods, e.g. discretization schemes, boundary conditions, and coupling aspects.

Computational Aeroacoustics

Computational Aeroacoustics PDF

Author: Jay C. Hardin

Publisher: Springer

Published: 1993-06-24

Total Pages: 513

ISBN-13: 9780387940748

DOWNLOAD EBOOK →

Computational aeroacoustics is rapidly emerging as an essential element in the study of aerodynamic sound. As with all emerging technologies, it is paramount that we assess the various opportuni ties and establish achievable goals for this new technology. Essential to this process is the identification and prioritization of fundamental aeroacoustics problems which are amenable to direct numerical siIn ulation. Questions, ranging from the role numerical methods play in the classical theoretical approaches to aeroacoustics, to the correct specification of well-posed numerical problems, need to be answered. These issues provided the impetus for the Workshop on Computa tional Aeroacoustics sponsored by ICASE and the Acoustics Division of NASA LaRC on April 6-9, 1992. The participants of the Work shop were leading aeroacousticians, computational fluid dynamicists and applied mathematicians. The Workshop started with the open ing remarks by M. Y. Hussaini and the welcome address by Kristin Hessenius who introduced the keynote speaker, Sir James Lighthill. The keynote address set the stage for the Workshop. It was both an authoritative and up-to-date discussion of the state-of-the-art in aeroacoustics. The presentations at the Workshop were divided into five sessions - i) Classical Theoretical Approaches (William Zorumski, Chairman), ii) Mathematical Aspects of Acoustics (Rodolfo Rosales, Chairman), iii) Validation Methodology (Allan Pierce, Chairman), iv) Direct Numerical Simulation (Michael Myers, Chairman), and v) Unsteady Compressible Flow Computa tional Methods (Douglas Dwoyer, Chairman).

Aerodynamic Sources of Acoustic Resonance in a Duct with Baffles

Aerodynamic Sources of Acoustic Resonance in a Duct with Baffles PDF

Author: Kerry Hourigan

Publisher:

Published: 1990

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Experimental and numerical investigations of the generation of resonant sound by flow in a duct containing two sets of baffles and the "feedback" of the sound on the vortex shedding process are reported. The experiments are conducted in a wind tunnel and the numerical simulations are used to predict the sources of resonant sound in the flow. The resonant sound field, which is principally longitudinal, is calculated by the finite element method and a discrete-vortex model is used to predict the observed separated flow. Analysis of the passage of a single point vortex past a baffle indicates that the amount of acoustic energy generated is a function of the phase of the acoustic cycle at which the vortex passes the baffle. A more elaborate model simulates the growth of vortex clouds through the clustering of elemental vortices shed from an upstream baffle, tracks the passage of these vortex clouds past a downstream baffle, predicts the generation of acoustic energy using Howe's theory of aerodynamic sound, and accounts for the feedback of sound on the vortex shedding. Comparison is made between the predicted time-dependent structures and the observed flow structures using smoke visualization. The vortex cloud model predicts the flow conditions under which net acoustic energy is generated by the flow and therefore when resonance can be sustained; the results are consistent with the occurrence of peaks in the observed resonant sound pressure levels.