A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning

A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning PDF

Author: Alborz Geramifard

Publisher:

Published: 2013

Total Pages: 76

ISBN-13: 9781601987617

DOWNLOAD EBOOK →

A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This article reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. We describe algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Reinforcement Learning and Dynamic Programming Using Function Approximators PDF

Author: Lucian Busoniu

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 277

ISBN-13: 1351833820

DOWNLOAD EBOOK →

From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Algorithms for Reinforcement Learning

Algorithms for Reinforcement Learning PDF

Author: Csaba Szepesvari

Publisher: Morgan & Claypool Publishers

Published: 2010-08-08

Total Pages: 103

ISBN-13: 1608454932

DOWNLOAD EBOOK →

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning

A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning PDF

Author: Alborz Geramifard

Publisher:

Published: 2013-12

Total Pages: 92

ISBN-13: 9781601987600

DOWNLOAD EBOOK →

This tutorial reviews techniques for planning and learning in Markov Decision Processes (MDPs) with linear function approximation of the value function. Two major paradigms for finding optimal policies were considered: dynamic programming (DP) techniques for planning and reinforcement learning (RL).

Inference and Learning from Data

Inference and Learning from Data PDF

Author: Ali H. Sayed

Publisher: Cambridge University Press

Published: 2022-11-30

Total Pages: 1165

ISBN-13: 1009218263

DOWNLOAD EBOOK →

Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.

Advances in Artificial Intelligence

Advances in Artificial Intelligence PDF

Author: Katsutoshi Yada

Publisher: Springer Nature

Published: 2021-07-22

Total Pages: 261

ISBN-13: 3030731138

DOWNLOAD EBOOK →

This book contains expanded versions of research papers presented at the international sessions of Annual Conference of the Japanese Society for Artificial Intelligence (JSAI), which was held online in June 2020. The JSAI annual conferences are considered key events for our organization, and the international sessions held at these conferences play a key role for the society in its efforts to share Japan’s research on artificial intelligence with other countries. In recent years, AI research has proved of great interest to business people. The event draws both more and more presenters and attendees every year, including people of diverse backgrounds such as law and the social sciences, in additional to artificial intelligence. We are extremely pleased to publish this collection of papers as the research results of our international sessions.

Foundations of Reinforcement Learning with Applications in Finance

Foundations of Reinforcement Learning with Applications in Finance PDF

Author: Ashwin Rao

Publisher: CRC Press

Published: 2022-12-16

Total Pages: 658

ISBN-13: 1000801101

DOWNLOAD EBOOK →

Foundations of Reinforcement Learning with Applications in Finance aims to demystify Reinforcement Learning, and to make it a practically useful tool for those studying and working in applied areas — especially finance. Reinforcement Learning is emerging as a powerful technique for solving a variety of complex problems across industries that involve Sequential Optimal Decisioning under Uncertainty. Its penetration in high-profile problems like self-driving cars, robotics, and strategy games points to a future where Reinforcement Learning algorithms will have decisioning abilities far superior to humans. But when it comes getting educated in this area, there seems to be a reluctance to jump right in, because Reinforcement Learning appears to have acquired a reputation for being mysterious and technically challenging. This book strives to impart a lucid and insightful understanding of the topic by emphasizing the foundational mathematics and implementing models and algorithms in well-designed Python code, along with robust coverage of several financial trading problems that can be solved with Reinforcement Learning. This book has been created after years of iterative experimentation on the pedagogy of these topics while being taught to university students as well as industry practitioners. Features Focus on the foundational theory underpinning Reinforcement Learning and software design of the corresponding models and algorithms Suitable as a primary text for courses in Reinforcement Learning, but also as supplementary reading for applied/financial mathematics, programming, and other related courses Suitable for a professional audience of quantitative analysts or data scientists Blends theory/mathematics, programming/algorithms and real-world financial nuances while always striving to maintain simplicity and to build intuitive understanding To access the code base for this book, please go to: https://github.com/TikhonJelvis/RL-book

From Shortest Paths to Reinforcement Learning

From Shortest Paths to Reinforcement Learning PDF

Author: Paolo Brandimarte

Publisher: Springer Nature

Published: 2021-01-11

Total Pages: 216

ISBN-13: 3030618676

DOWNLOAD EBOOK →

Dynamic programming (DP) has a relevant history as a powerful and flexible optimization principle, but has a bad reputation as a computationally impractical tool. This book fills a gap between the statement of DP principles and their actual software implementation. Using MATLAB throughout, this tutorial gently gets the reader acquainted with DP and its potential applications, offering the possibility of actual experimentation and hands-on experience. The book assumes basic familiarity with probability and optimization, and is suitable to both practitioners and graduate students in engineering, applied mathematics, management, finance and economics.

Artificial Neural Networks and Machine Learning – ICANN 2017

Artificial Neural Networks and Machine Learning – ICANN 2017 PDF

Author: Alessandra Lintas

Publisher: Springer

Published: 2017-10-20

Total Pages: 469

ISBN-13: 3319686003

DOWNLOAD EBOOK →

The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.

Handling Uncertainty and Networked Structure in Robot Control

Handling Uncertainty and Networked Structure in Robot Control PDF

Author: Lucian Bușoniu

Publisher: Springer

Published: 2016-02-06

Total Pages: 388

ISBN-13: 3319263277

DOWNLOAD EBOOK →

This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer vision, nonlinear and learning control, and multi-agent systems.