A Study of Heteroclinic Orbits for a Class of Fourth Order Ordinary Differential Equations

A Study of Heteroclinic Orbits for a Class of Fourth Order Ordinary Differential Equations PDF

Author: Denis Bonheure

Publisher: Presses univ. de Louvain

Published: 2004

Total Pages: 218

ISBN-13: 293034475X

DOWNLOAD EBOOK →

In qualitative theory of differential equations, an important role is played by special classes of solutions, like periodic solutions or solutions to some boundary value problems. When a system of ordinary differential equations has equilibria, i.e. constant solutions, whose stability properties are known, it is significant to search for connections between them by trajectories of solutions of the given system. These are called homoclinic or heteroclinic, according to whether they describe a loop based at one single equilibrium or they "start" and "end" at two distinct equilibria. This thesis is devoted to the study of heteroclinic solutions for a specific class of ordinary differential equations related to the Extended Fisher-Kolmogorov equation and the Swift-Hohenberg equation. These are semilinear fourth order bi-stable evolution equations which appear as mathematical models for problems arising in Mechanics, Chemistry and Biology. For such equations, the set of bounded stationary solutions is of great interest. These solve an autonomous fourth order equation. In this thesis, we focus on such equations having a variational structure. In that case, the solutions are critical points of an associated action functional defined in convenient functional spaces. We then look for heteroclinic solutions as minimizers of the action functional. Our main contributions concern existence and multiplicity results of such global and local minimizers in the case where the functional is defined from sign changing Lagrangians. The underlying idea is to impose conditions which imply a lower bound on the action over all admissible functions. We then combine classical arguments of the Calculus of Variations with careful estimates on minimizing sequences to prove the existence of a minimum.

Handbook of Differential Equations: Ordinary Differential Equations

Handbook of Differential Equations: Ordinary Differential Equations PDF

Author: A. Canada

Publisher: Elsevier

Published: 2006-08-21

Total Pages: 753

ISBN-13: 0080463819

DOWNLOAD EBOOK →

This handbook is the third volume in a series of volumes devoted to self contained and up-to-date surveys in the tehory of ordinary differential equations, written by leading researchers in the area. All contributors have made an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wide audience. These ideas faithfully reflect the spirit of this multi-volume and hopefully it becomes a very useful tool for reseach, learing and teaching. This volumes consists of seven chapters covering a variety of problems in ordinary differential equations. Both pure mathematical research and real word applications are reflected by the contributions to this volume. Covers a variety of problems in ordinary differential equations Pure mathematical and real world applications Written for mathematicians and scientists of many related fields

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems PDF

Author: Gerald Teschl

Publisher: American Mathematical Soc.

Published: 2012-08-30

Total Pages: 356

ISBN-13: 0821883283

DOWNLOAD EBOOK →

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

An Introduction to Minimax Theorems and Their Applications to Differential Equations

An Introduction to Minimax Theorems and Their Applications to Differential Equations PDF

Author: Maria do Rosário Grossinho

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 279

ISBN-13: 1475733089

DOWNLOAD EBOOK →

The book is intended to be an introduction to critical point theory and its applications to differential equations. Although the related material can be found in other books, the authors of this volume have had the following goals in mind: To present a survey of existing minimax theorems, To give applications to elliptic differential equations in bounded domains, To consider the dual variational method for problems with continuous and discontinuous nonlinearities, To present some elements of critical point theory for locally Lipschitz functionals and give applications to fourth-order differential equations with discontinuous nonlinearities, To study homoclinic solutions of differential equations via the variational methods. The contents of the book consist of seven chapters, each one divided into several sections. Audience: Graduate and post-graduate students as well as specialists in the fields of differential equations, variational methods and optimization.

Nonlinear Optics

Nonlinear Optics PDF

Author: Alan Newell

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 209

ISBN-13: 042998247X

DOWNLOAD EBOOK →

This book is about Nonlinear Optics, the study of how high-intensity light propagates through and interacts with matter. It takes the reader from the starting point of Maxwell's equations to some of the frontiers of modern research in the subject.

Ordinary Differential Equations with Applications

Ordinary Differential Equations with Applications PDF

Author: Carmen Chicone

Publisher: Springer Science & Business Media

Published: 2008-04-08

Total Pages: 569

ISBN-13: 0387226230

DOWNLOAD EBOOK →

Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.