Mathematics of Large Eddy Simulation of Turbulent Flows

Mathematics of Large Eddy Simulation of Turbulent Flows PDF

Author: Luigi Carlo Berselli

Publisher: Springer Science & Business Media

Published: 2006

Total Pages: 378

ISBN-13: 9783540263166

DOWNLOAD EBOOK →

The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field

Direct and Large-Eddy Simulation II

Direct and Large-Eddy Simulation II PDF

Author: Jean-Pierre Chollet

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 436

ISBN-13: 9401156247

DOWNLOAD EBOOK →

Progress in the numerical simulation of turbulence has been rapid in the 1990s. New techniques both for the numerical approximation of the Navier-Stokes equations and for the subgrid-scale models used in large-eddy simulation have emerged and are being widely applied for both fundamental and applied engineering studies, along with novel ideas for the performance and use of simulation for compressible, chemically reacting and transitional flows. This collection of papers from the second ERCOFTAC Workshop on Direct and Large-Eddy Simulation, held in Grenoble in September 1996, presents the key research being undertaken in Europe and Japan on these topics. Describing in detail the ambitious use of DNS for fundamental studies and of LES for complex flows of potential and actual engineering importance, this volume will be of interest to all researchers active in the area.

Modelling and Simulation of Turbulent Heat Transfer

Modelling and Simulation of Turbulent Heat Transfer PDF

Author: B. Sundén

Publisher: WIT Press

Published: 2005-02-21

Total Pages: 361

ISBN-13: 1853129569

DOWNLOAD EBOOK →

Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.

Direct and Large-Eddy Simulation I

Direct and Large-Eddy Simulation I PDF

Author: Peter R. Voke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 438

ISBN-13: 940111000X

DOWNLOAD EBOOK →

It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.

Large-Scale Scientific Computing

Large-Scale Scientific Computing PDF

Author: Ivan Lirkov

Publisher: Springer

Published: 2012-05-24

Total Pages: 669

ISBN-13: 3642298435

DOWNLOAD EBOOK →

This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Large-Scale Scientific Computations, LSSC 2011, held in Sozopol, Bulgaria, in June 2011. The 74 revised full papers presented together with 3 plenary and invited papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on robust multigrid, multilevel and multiscale, deterministic and stochastic methods for modeling highly heterogeneous media, advanced methods for transport, control and uncertain systems, applications of metaheuristics to large-scale problems, environmental modelling, large scale computing on many-core architectures, multiscale industrial, enviromental and biomedical problems, efficient algorithms of computational geometry, high performance Monte Carlo simulations, voxel based computations and contributed papers.

Advanced Turbulent Flow Computations

Advanced Turbulent Flow Computations PDF

Author: Roger Peyret

Publisher: Springer

Published: 2014-05-04

Total Pages: 320

ISBN-13: 3709125901

DOWNLOAD EBOOK →

This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.

Large Eddy Simulation of Turbulent Incompressible Flows

Large Eddy Simulation of Turbulent Incompressible Flows PDF

Author: Volker John

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 270

ISBN-13: 3642186823

DOWNLOAD EBOOK →

Large eddy simulation (LES) seeks to simulate the large structures of a turbulent flow. This is the first monograph which considers LES from a mathematical point of view. It concentrates on LES models for which mathematical and numerical analysis is already available and on related LES models. Most of the available analysis is given in detail, the implementation of the LES models into a finite element code is described, the efficient solution of the discrete systems is discussed and numerical studies with the considered LES models are presented.

Advances in Hybrid RANS-LES Modelling

Advances in Hybrid RANS-LES Modelling PDF

Author: Shia-Hui Peng

Publisher: Springer Science & Business Media

Published: 2008-01-24

Total Pages: 343

ISBN-13: 3540778152

DOWNLOAD EBOOK →

Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.