A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing PDF

Author: Simon Foucart

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 634

ISBN-13: 0817649484

DOWNLOAD EBOOK →

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing PDF

Author: Simon Foucart

Publisher: Birkhäuser

Published: 2013-06-21

Total Pages: 0

ISBN-13: 9781493900633

DOWNLOAD EBOOK →

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing PDF

Author: Simon Foucart

Publisher: Birkhäuser

Published: 2013-08-08

Total Pages: 625

ISBN-13: 9780817649500

DOWNLOAD EBOOK →

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

An Introduction to Compressed Sensing

An Introduction to Compressed Sensing PDF

Author: M. Vidyasagar

Publisher: SIAM

Published: 2019-12-03

Total Pages: 341

ISBN-13: 161197612X

DOWNLOAD EBOOK →

Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 1626

ISBN-13: 0387929193

DOWNLOAD EBOOK →

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Compressive Imaging: Structure, Sampling, Learning

Compressive Imaging: Structure, Sampling, Learning PDF

Author: Ben Adcock

Publisher: Cambridge University Press

Published: 2021-09-16

Total Pages: 620

ISBN-13: 1108383912

DOWNLOAD EBOOK →

Accurate, robust and fast image reconstruction is a critical task in many scientific, industrial and medical applications. Over the last decade, image reconstruction has been revolutionized by the rise of compressive imaging. It has fundamentally changed the way modern image reconstruction is performed. This in-depth treatment of the subject commences with a practical introduction to compressive imaging, supplemented with examples and downloadable code, intended for readers without extensive background in the subject. Next, it introduces core topics in compressive imaging – including compressed sensing, wavelets and optimization – in a concise yet rigorous way, before providing a detailed treatment of the mathematics of compressive imaging. The final part is devoted to recent trends in compressive imaging: deep learning and neural networks. With an eye to the next decade of imaging research, and using both empirical and mathematical insights, it examines the potential benefits and the pitfalls of these latest approaches.

Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements

Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements PDF

Author: S. Twomey

Publisher: Courier Corporation

Published: 2014-02-04

Total Pages: 302

ISBN-13: 0486781380

DOWNLOAD EBOOK →

Graduate-level monograph develops background and fundamental theory of inversion processes used in remote sensing (e.g. atmospheric temperature structure measurements from satellites), starting at elementary level. Largely self-contained; each chapter begins with elementary discussion outlining problems and questions to be covered. Suggestions for further reading.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK →

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Matrix Iterative Analysis

Matrix Iterative Analysis PDF

Author: Richard S Varga

Publisher: Springer Science & Business Media

Published: 2009-12-05

Total Pages: 363

ISBN-13: 3642051561

DOWNLOAD EBOOK →

This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.

Wavelet Analysis with Applications to Image Processing

Wavelet Analysis with Applications to Image Processing PDF

Author: Lakshman Prasad

Publisher: CRC Press

Published: 2020-01-29

Total Pages: 300

ISBN-13: 1000721981

DOWNLOAD EBOOK →

Wavelet analysis is among the newest additions to the arsenals of mathematicians, scientists, and engineers, and offers common solutions to diverse problems. However, students and professionals in some areas of engineering and science, intimidated by the mathematical background necessary to explore this subject, have been unable to use this powerful tool. The first book on the topic for readers with minimal mathematical backgrounds, Wavelet Analysis with Applications to Image Processing provides a thorough introduction to wavelets with applications in image processing. Unlike most other works on this subject, which are often collections of papers or research advances, this book offers students and researchers without an extensive math background a step-by-step introduction to the power of wavelet transforms and applications to image processing. The first four chapters introduce the basic topics of analysis that are vital to understanding the mathematics of wavelet transforms. Subsequent chapters build on the information presented earlier to cover the major themes of wavelet analysis and its applications to image processing. This is an ideal introduction to the subject for students, and a valuable reference guide for professionals working in image processing.