A Dual Boundary Element Formulation for Three-dimensional Fracture Analysis

A Dual Boundary Element Formulation for Three-dimensional Fracture Analysis PDF

Author: Andrew John Wilde

Publisher: Computational Mechanics

Published: 2000

Total Pages: 258

ISBN-13:

DOWNLOAD EBOOK →

This monograph is concerned with the study of Dual Boundary Element formulation using continuous elements in three dimensions and its application to the analysis of fracture problems and crack growth. Formulations for modelling geomechanical fracture are also presented.

Boundary Element Analysis in Computational Fracture Mechanics

Boundary Element Analysis in Computational Fracture Mechanics PDF

Author: T.A. Cruse

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 171

ISBN-13: 9400913850

DOWNLOAD EBOOK →

The Boundary Integral Equation (BIE) method has occupied me to various degrees for the past twenty-two years. The attraction of BIE analysis has been its unique combination of mathematics and practical application. The EIE method is unforgiving in its requirement for mathe matical care and its requirement for diligence in creating effective numerical algorithms. The EIE method has the ability to provide critical inSight into the mathematics that underlie one of the most powerful and useful modeling approximations ever devised--elasticity. The method has even revealed important new insights into the nature of crack tip plastic strain distributions. I believe that EIE modeling of physical problems is one of the remaining opportunities for challenging and fruitful research by those willing to apply sound mathematical discipline coupled with phys ical insight and a desire to relate the two in new ways. The monograph that follows is the summation of many of the successes of that twenty-two years, supported by the ideas and synergisms that come from working with individuals who share a common interest in engineering mathematics and their application. The focus of the monograph is on the application of EIE modeling to one of the most important of the solid mechanics disciplines--fracture mechanics. The monograph is not a trea tise on fracture mechanics, as there are many others who are far more qualified than I to expound on that topic.

The Boundary Element Method, Volume 2

The Boundary Element Method, Volume 2 PDF

Author: M. H. Aliabadi

Publisher: John Wiley & Sons

Published: 2002-04-29

Total Pages: 614

ISBN-13: 9780470842980

DOWNLOAD EBOOK →

The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.

Boundary Elements

Boundary Elements PDF

Author: C. A. Brebbia

Publisher: WIT Press

Published: 1994-05-31

Total Pages: 327

ISBN-13: 1853123498

DOWNLOAD EBOOK →

This best-selling text provides a simple introduction to the Boundary Element Method. Based on the authors' long teaching experience it is designed to convey in the most effective manner the fundamentals of the method. The book is presented in a way which makes it accessible to both undergraduate and graduate students as well as to practising engineers who want to learn the foundations of the technique. Of particular interest is the way in which Boundary Element concepts are introduced and immediately applied in simple, but useful, computer codes to facilitate understanding. A CD with the complete listing of program codes in Fortran is also included.

Symmetric Galerkin Boundary Element Method

Symmetric Galerkin Boundary Element Method PDF

Author: Alok Sutradhar

Publisher: Springer Science & Business Media

Published: 2008-09-26

Total Pages: 276

ISBN-13: 3540687726

DOWNLOAD EBOOK →

Symmetric Galerkin Boundary Element Method presents an introduction as well as recent developments of this accurate, powerful, and versatile method. The formulation possesses the attractive feature of producing a symmetric coefficient matrix. In addition, the Galerkin approximation allows standard continuous elements to be used for evaluation of hypersingular integrals. FEATURES • Written in a form suitable for a graduate level textbook as well as a self-learning tutorial in the field. • Covers applications in two-dimensional and three-dimensional problems of potential theory and elasticity. Additional basic topics involve axisymmetry, multi-zone and interface formulations. More advanced topics include fluid flow (wave breaking over a sloping beach), non-homogeneous media, functionally graded materials (FGMs), anisotropic elasticity, error estimation, adaptivity, and fracture mechanics. • Presents integral equations as a basis for the formulation of general symmetric Galerkin boundary element methods and their corresponding numerical implementation. • Designed to convey effective unified procedures for the treatment of singular and hypersingular integrals that naturally arise in the method. Symbolic codes using Maple® for singular-type integrations are provided and discussed in detail. • The user-friendly adaptive computer code BEAN (Boundary Element ANalysis), fully written in Matlab®, is available as a companion to the text. The complete source code, including the graphical user-interface (GUI), can be downloaded from the web site http://www.ghpaulino.com/SGBEM_book. The source code can be used as the basis for building new applications, and should also function as an effective teaching tool. To facilitate the use of BEAN, a video tutorial and a library of practical examples are provided.

Progress in Boundary Element Methods

Progress in Boundary Element Methods PDF

Author: BREBBIA

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 226

ISBN-13: 147576300X

DOWNLOAD EBOOK →

A substantial amount of research on Boundary Elements has taken place since publication of the first Volume of this series. Most of the new work has concentrated on the solution of non-linear and time dependent problems and the development of numerical techniques to increase the efficiency of the method. Chapter 1 of this Volume deals with the solution of non-linear potential problems, for which the diffusivity coefficient is a function of the potential and the boundary conditions are also non-linear. The recent research reported here opens the way for the solution of a: large range of non-homogeneous problems by using a simple transformation which linearizes the governing equations and consequently does not require the use of internal cells. Chapter 2 summarizes the main integral equations for the solution of two-and three dimensional scalar wave propagation problems. This is a type of problem that is well suited to boundary elements but generally gives poor results when solved using finite elements. The problem of fracture mechanics is studied in Chapter 3, where the ad vantages of using boundary integral equations are demonstrated. One of the most interesting features of BEM i~ the possibility of describing the problem only as a function of the boundary unknowns, even in the presence of body, centrifugal and temperature induced forces. Chapter 4 explains how this can be done for two-and three-dimensional elastostatic problems.