A Diversity of Pathways Through Science Education

A Diversity of Pathways Through Science Education PDF

Author: Yann Shiou Ong

Publisher: Springer

Published: 2024-07-07

Total Pages: 0

ISBN-13: 9789819726066

DOWNLOAD EBOOK →

This book presents the work of academics who contributed their work at the International Science Education Conference (ISEC) 2021, in alignment with the conference theme '20/20 Vision for Science Education Research.' Collectively, the chapters aim to evoke intellectual dialogues on current and future trends in science education. It features chapters that are grouped thematically into three sections: Questions and Questioning in Science/STEM education, Developing Science Teaching and Assessment, and History, Philosophy, and Sociology of Science/Engineering, and Informal Learning. Through the various sections, the book presents empirical studies in science and engineering classrooms or laboratories, puts forward a framework for problem-based learning, provides an account of a prominent scientist’s efforts in promoting practical science through analysis of historical documents, and uncovers trends in informal science learning space research through a review of literature. Each section is introduced by a commentary with further insights and thought-provoking questions on ideas raised in the chapters. The book also includes a 'Notes to Our Future Colleagues' section in each chapter, which presents readers with a collective vision for the state of science education research in the year 2050.

Expanding Underrepresented Minority Participation

Expanding Underrepresented Minority Participation PDF

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2011-07-29

Total Pages: 229

ISBN-13: 0309159687

DOWNLOAD EBOOK →

In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. Expanding Underrepresented Minority Participation explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making minority participation in STEM education at all levels a national priority. Expanding Underrepresented Minority Participation analyzes the rate of change and the challenges the nation currently faces in developing a strong and diverse workforce. Although minorities are the fastest growing segment of the population, they are underrepresented in the fields of science and engineering. Historically, there has been a strong connection between increasing educational attainment in the United States and the growth in and global leadership of the economy. Expanding Underrepresented Minority Participation suggests that the federal government, industry, and post-secondary institutions work collaboratively with K-12 schools and school systems to increase minority access to and demand for post-secondary STEM education and technical training. The book also identifies best practices and offers a comprehensive road map for increasing involvement of underrepresented minorities and improving the quality of their education. It offers recommendations that focus on academic and social support, institutional roles, teacher preparation, affordability and program development.

New Developments in Pathways Towards Diversity and Inclusion in STEM: A United States Perspective

New Developments in Pathways Towards Diversity and Inclusion in STEM: A United States Perspective PDF

Author: Alexander Gates

Publisher: Frontiers Media SA

Published: 2022-10-17

Total Pages: 273

ISBN-13: 2832505813

DOWNLOAD EBOOK →

The Louis Stokes Alliances for Minority Participation (LSAMP) program of the US National Science Foundation has been a primary force for raising the success and graduation of minority students in STEM for 30 years. Increasing the number of underrepresented students earning baccalaureate degrees, and entering graduate school in STEM is the goal of LSAMP. This goal has been nearly achieved through the formation of alliances of degree granting institutions of higher learning, varying from community colleges to major research institutions. Currently there are 59 alliances including more than 400 institutions. LSAMP is responsible for more than 650,000 bachelor’s degrees earned by minority students in STEM. The papers for this Research Topic should focus on the use of LSAMP activities, programs and collaborations to develop pathways to success and graduation of STEM majors from minority groups that underrepresented in STEM. These pathways can include any segment from pre-college through graduate school. Areas of special interest include mentoring, research experiences, transitions between levels and novel approaches for retention. The studies should be research based and rigorous. They can be pure research studies, curriculum and design or literature reviews but they must be at a cutting edge level and be subject to detailed review and assessment.

A Framework for K-12 Science Education

A Framework for K-12 Science Education PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2012-02-28

Total Pages: 400

ISBN-13: 0309214459

DOWNLOAD EBOOK →

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

Learning Science in Informal Environments

Learning Science in Informal Environments PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2009-05-27

Total Pages: 348

ISBN-13: 0309141133

DOWNLOAD EBOOK →

Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and psychological and anthropological studies of learning. Learning Science in Informal Environments draws together disparate literatures, synthesizes the state of knowledge, and articulates a common framework for the next generation of research on learning science in informal environments across a life span. Contributors include recognized experts in a range of disciplines-research and evaluation, exhibit designers, program developers, and educators. They also have experience in a range of settings-museums, after-school programs, science and technology centers, media enterprises, aquariums, zoos, state parks, and botanical gardens. Learning Science in Informal Environments is an invaluable guide for program and exhibit designers, evaluators, staff of science-rich informal learning institutions and community-based organizations, scientists interested in educational outreach, federal science agency education staff, and K-12 science educators.

Barriers and Opportunities for 2-Year and 4-Year STEM Degrees

Barriers and Opportunities for 2-Year and 4-Year STEM Degrees PDF

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-05-18

Total Pages: 215

ISBN-13: 0309373603

DOWNLOAD EBOOK →

Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be "stemmed" and greater efficiencies realized? These questions and others are at the heart of this study. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees reviews research on the roles that people, processes, and institutions play in 2-and 4-year STEM degree production. This study pays special attention to the factors that influence students' decisions to enter, stay in, or leave STEM majorsâ€"quality of instruction, grading policies, course sequences, undergraduate learning environments, student supports, co-curricular activities, students' general academic preparedness and competence in science, family background, and governmental and institutional policies that affect STEM educational pathways. Because many students do not take the traditional 4-year path to a STEM undergraduate degree, Barriers and Opportunities describes several other common pathways and also reviews what happens to those who do not complete the journey to a degree. This book describes the major changes in student demographics; how students, view, value, and utilize programs of higher education; and how institutions can adapt to support successful student outcomes. In doing so, Barriers and Opportunities questions whether definitions and characteristics of what constitutes success in STEM should change. As this book explores these issues, it identifies where further research is needed to build a system that works for all students who aspire to STEM degrees. The conclusions of this report lay out the steps that faculty, STEM departments, colleges and universities, professional societies, and others can take to improve STEM education for all students interested in a STEM degree.

Teaching Science in Diverse Classrooms

Teaching Science in Diverse Classrooms PDF

Author: Douglas B. Larkin

Publisher: Routledge

Published: 2019-08-29

Total Pages: 215

ISBN-13: 0429576382

DOWNLOAD EBOOK →

As a distinctive voice in science education writing, Douglas Larkin provides a fresh perspective for science teachers who work to make real science accessible to all K-12 students. Through compelling anecdotes and vignettes, this book draws deeply on research to present a vision of successful and inspiring science teaching that builds upon the prior knowledge, experiences, and interests of students. With empathy for the challenges faced by contemporary science teachers, Teaching Science in Diverse Classrooms encourages teachers to embrace the intellectual task of engaging their students in learning science, and offers an abundance of examples of what high-quality science teaching for all students looks like. Divided into three sections, this book is a connected set of chapters around the central idea that the decisions made by good science teachers help light the way for their students along both familiar and unfamiliar pathways to understanding. The book addresses topics and issues that occur in the daily lives and career arcs of science teachers such as: • Aiming for culturally relevant science teaching • Eliciting and working with students’ ideas • Introducing discussion and debate • Reshaping school science with scientific practices • Viewing science teachers as science learners Grounded in the Next Generation Science Standards (NGSS), this is a perfect supplementary resource for both preservice and inservice teachers and teacher educators that addresses the intellectual challenges of teaching science in contemporary classrooms and models how to enact effective, reform

Call to Action for Science Education

Call to Action for Science Education PDF

Author: National Academies of Sciences Engineering and Medicine

Publisher:

Published: 2021-08-13

Total Pages:

ISBN-13: 9780309477017

DOWNLOAD EBOOK →

Scientific thinking and understanding are essential for all people navigating the world, not just for scientists and other science, technology, engineering and mathematics (STEM) professionals. Knowledge of science and the practice of scientific thinking are essential components of a fully functioning democracy. Science is also crucial for the future STEM workforce and the pursuit of living wage jobs. Yet, science education is not the national priority it needs to be, and states and local communities are not yet delivering high quality, rigorous learning experiences in equal measure to all students from elementary school through higher education. Call to Action for Science Education: Building Opportunity for the Future articulates a vision for high quality science education, describes the gaps in opportunity that currently exist for many students, and outlines key priorities that need to be addressed in order to advance better, more equitable science education across grades K-16. This report makes recommendations for state and federal policy makers on ways to support equitable, productive pathways for all students to thrive and have opportunities to pursue careers that build on scientific skills and concepts. Call to Action for Science Education challenges the policy-making community at state and federal levels to acknowledge the importance of science, make science education a core national priority, and empower and give local communities the resources they must have to deliver a better, more equitable science education.

Teacher Education to Enhance Diversity in STEM

Teacher Education to Enhance Diversity in STEM PDF

Author: A. Anthony Ash II

Publisher: Routledge

Published: 2020-12-29

Total Pages: 235

ISBN-13: 1000299155

DOWNLOAD EBOOK →

Addressing underlying issues in science education and teacher training, which contribute to continued underrepresentation of racial and ethnic minority students in STEM and STEAM subjects and careers, this timely volume illustrates how a critical postmodern science pedagogy (CPSP) can be used effectively to raise awareness of diversity issues amongst preservice teachers. Using a case study design consisting of class observations, interviews, content analysis, questionnaires, and instructional interventions in preservice teacher training, the volume bridges science and multicultural education and investigates how curricular development and teacher preparation can be used to ensure that science education itself promotes diversity within STEM, and throughout education. Chapters also examine the intersections of science education and science literacy for both students and teachers and, in doing so, promote the importance of positive and accurate representation of diversity within science and research discourse. The book attempts to raise awareness regarding the need for meaningful curricular reform that creates real opportunities to address historical and scientific misinformation, while increasing diversity and inclusion in schools and society. This important text will be of interest to postgraduate students, researchers, scholars, and preservice teachers in the fields of science and mathematics education, STEM, multicultural education, teacher education, urban education, and the sociology of education.