2D Materials for Nanoelectronics

2D Materials for Nanoelectronics PDF

Author: Michel Houssa

Publisher: CRC Press

Published: 2016-05-05

Total Pages: 472

ISBN-13: 1498704182

DOWNLOAD EBOOK →

Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris

2D Nanoelectronics

2D Nanoelectronics PDF

Author: Mircea Dragoman

Publisher: Springer

Published: 2016-12-01

Total Pages: 210

ISBN-13: 3319484370

DOWNLOAD EBOOK →

This book is dedicated to the new two-dimensional one-atomic-layer-thick materials such as graphene, metallic chalcogenides, silicene and other 2D materials. The book describes their main physical properties and applications in nanoelctronics, photonics, sensing and computing. A large part of the book deals with graphene and its amazing physical properties. Another important part of the book deals with semiconductor monolayers such as MoS2 with impressive applications in photonics, and electronics. Silicene and germanene are the atom-thick counterparts of silicon and germanium with impressive applications in electronics and photonics which are still unexplored. Consideration of two-dimensional electron gas devices conclude the treatment. The physics of 2DEG is explained in detail and the applications in THz and IR region are discussed. Both authors are working currently on these 2D materials developing theory and applications.

2D Materials

2D Materials PDF

Author: Phaedon Avouris

Publisher: Cambridge University Press

Published: 2017-06-29

Total Pages: 521

ISBN-13: 1316738132

DOWNLOAD EBOOK →

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

2D Materials and Van der Waals Heterostructures

2D Materials and Van der Waals Heterostructures PDF

Author: Antonio Di Bartolomeo

Publisher: MDPI

Published: 2020-06-23

Total Pages: 170

ISBN-13: 3039287680

DOWNLOAD EBOOK →

The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.

Graphene and other Two-dimensional Materials in Nanoelectronics and Optoelectronics

Graphene and other Two-dimensional Materials in Nanoelectronics and Optoelectronics PDF

Author: Jie Sun

Publisher: MDPI

Published: 2020-12-02

Total Pages: 92

ISBN-13: 3039362046

DOWNLOAD EBOOK →

Graphene is probably the most fascinating material discovered in this century. A group of 2D materials can be called graphene derivatives, and these have attracted tremendous interest. This includes materials that are one or a few atoms thick. They have outstanding optical/electrical properties, and, most importantly, they are flat and thin—they can be processed with existing semiconductor technologies. Therefore, they have great potential in nanoelectronics and optoelectronics, playing a revolutionary role in these fields via their integration with other bulk materials. Of course, there are still challenges, such as large-scale production, as well as the mechanical transfer of these atomically thin sheets. These are the fields where scientists are now actively doing research. In this book, some leading scientists in the area share their most recent results on the material growth, device physics/processing, and system integration of 2D materials and devices. This book can serve as a starting point for young students to get familiar with the field, and should also be valuable to established device physicists and engineers who would like to explore the potential applications of 2D materials in electronics.

Emerging 2D Materials and Devices for the Internet of Things

Emerging 2D Materials and Devices for the Internet of Things PDF

Author: Li Tao

Publisher: Elsevier

Published: 2020-06-12

Total Pages: 348

ISBN-13: 012818387X

DOWNLOAD EBOOK →

Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications summarizes state-of-the-art technologies in applying 2D layered materials, discusses energy and sensing device applications as essential infrastructure solutions, and explores designs that will make internet-of-things devices faster, more reliable and more accessible for the creation of mass-market products. The book focuses on information, energy and sensing applications, showing how different types of 2D materials are being used to create a new generation of products and devices that harness the capabilities of wireless technology in an eco-efficient, reliable way. This book is an important resource for both materials scientists and engineers, who are designing new wireless products in a variety of industry sectors. Explores how 2D materials are being used to create faster and more reliable wireless network solutions Discusses how graphene-based nanocomposites are being used for energy harvesting and storage applications Outlines the major challenges for integrating 2D materials in electronic sensing devices

Two-Dimensional Materials in Nanophotonics

Two-Dimensional Materials in Nanophotonics PDF

Author: Yuerui Lu

Publisher: CRC Press

Published: 2019-10-31

Total Pages: 298

ISBN-13: 0429768001

DOWNLOAD EBOOK →

Two-dimensional (2D) materials have attracted tremendous interest since the study of graphene in the early 21st century. With their thickness in the angstrom-to-nanometer range, 2D materials, including graphene, transition metal dichalcogenides, phosphorene, silicene, and other inorganic and organic materials, can be an ideal platform to study fundamental many-body interactions because of reduced screening and can also be further engineered for nanophotonic applications. This book compiles research outcomes of leading groups in the field of 2D materials for nanophotonic physics and devices. It describes research advances of 2D materials for various nanophotonic applications, including ultrafast lasers, atomically thin optical lenses, and gratings to inelastically manipulate light propagation, their integrations with photonic nanostructures, and light–matter interactions. The book focuses on actual applications, while digging into the physics underneath. It targets advanced undergraduate- and graduate-level students of nanotechnology and researchers in nanotechnology, physics, and chemistry, especially those with an interest in 2D materials.

Graphene and Other Two-dimensional Materials in Nanoelectronics and Optoelectronics

Graphene and Other Two-dimensional Materials in Nanoelectronics and Optoelectronics PDF

Author: Jie Sun

Publisher:

Published: 2020

Total Pages: 92

ISBN-13: 9783039362059

DOWNLOAD EBOOK →

Graphene is probably the most fascinating material discovered in this century. A group of 2D materials can be called graphene derivatives, and these have attracted tremendous interest. This includes materials that are one or a few atoms thick. They have outstanding optical/electrical properties, and, most importantly, they are flat and thin--they can be processed with existing semiconductor technologies. Therefore, they have great potential in nanoelectronics and optoelectronics, playing a revolutionary role in these fields via their integration with other bulk materials. Of course, there are still challenges, such as large-scale production, as well as the mechanical transfer of these atomically thin sheets. These are the fields where scientists are now actively doing research. In this book, some leading scientists in the area share their most recent results on the material growth, device physics/processing, and system integration of 2D materials and devices. This book can serve as a starting point for young students to get familiar with the field, and should also be valuable to established device physicists and engineers who would like to explore the potential applications of 2D materials in electronics.

Nanoelectronic Materials

Nanoelectronic Materials PDF

Author: Loutfy H. Madkour

Publisher: Springer

Published: 2019-06-27

Total Pages: 783

ISBN-13: 3030216217

DOWNLOAD EBOOK →

This book presents synthesis techniques for the preparation of low-dimensional nanomaterials including 0D (quantum dots), 1D (nanowires, nanotubes) and 2D (thin films, few layers), as well as their potential applications in nanoelectronic systems. It focuses on the size effects involved in the transition from bulk materials to nanomaterials; the electronic properties of nanoscale devices; and different classes of nanomaterials from microelectronics to nanoelectronics, to molecular electronics. Furthermore, it demonstrates the structural stability, physical, chemical, magnetic, optical, electrical, thermal, electronic and mechanical properties of the nanomaterials. Subsequent chapters address their characterization, fabrication techniques from lab-scale to mass production, and functionality. In turn, the book considers the environmental impact of nanotechnology and novel applications in the mechanical industries, energy harvesting, clean energy, manufacturing materials, electronics, transistors, health and medical therapy. In closing, it addresses the combination of biological systems with nanoelectronics and highlights examples of nanoelectronic–cell interfaces and other advanced medical applications. The book answers the following questions: • What is different at the nanoscale? • What is new about nanoscience? • What are nanomaterials (NMs)? • What are the fundamental issues in nanomaterials? • Where are nanomaterials found? • What nanomaterials exist in nature? • What is the importance of NMs in our lives? • Why so much interest in nanomaterials? • What is at nanoscale in nanomaterials? • What is graphene? • Are pure low-dimensional systems interesting and worth pursuing? • Are nanotechnology products currently available? • What are sensors? • How can Artificial Intelligence (AI) and nanotechnology work together? • What are the recent advances in nanoelectronic materials? • What are the latest applications of NMs?

Nanoelectronics and Materials Development

Nanoelectronics and Materials Development PDF

Author: Abhijit Kar

Publisher: BoD – Books on Demand

Published: 2016-07-27

Total Pages: 152

ISBN-13: 9535125257

DOWNLOAD EBOOK →

The current edited book presents some of the most advanced research findings in the field of nanotechnology and its application in materials development in a very concise form. The main focus of the book is dragged toward those materials where electronic properties are manipulated for development of advanced materials. We have discussed about the extensive usage of nanotechnology and its impact on various facets of the chip-making practice from materials to devices such as basic memory, quantum dots, nanotubes, nanowires, graphene-like 2D materials, and CIGS thin-film solar cells as energy-harvesting devices. Researchers as well as students can gain valuable insights into the different processing of nanomaterials, characterization procedures of the materials in nanoscale, and their different functional properties and applications.