1D Semiconducting Nanostructures for Flexible and Large-Area Electronics

1D Semiconducting Nanostructures for Flexible and Large-Area Electronics PDF

Author: Dhayalan Shakthivel

Publisher: Cambridge University Press

Published: 2019-10-31

Total Pages: 158

ISBN-13: 1108624162

DOWNLOAD EBOOK →

Semiconducting nanostructures such as nanowires (NWs) have been used as building blocks for various types of sensors, energy storage and generation devices, electronic devices and for new manufacturing methods involving printed NWs. The response of these sensing/energy/electronic components and the new fabrication methods depends very much on the quality of NWs and for this reason it is important to understand the growth mechanism of 1D semiconducting nanostructures. This is also important to understand the compatibility of NW growth steps and tools used in the process with these unconventional substrates such as plastic that are used in flexible and large area electronics. Therefore, this Element presents at length discussion about the growth mechanisms, growth conditions and the tools used for the synthesis of NWs. Although NWs from Si, ZnO and carbon nanotubes (CNTs) are included, the discussion is generic and relevant to several other types of NWs as well as heterostructures.

1D Semiconducting Hybrid Nanostructures

1D Semiconducting Hybrid Nanostructures PDF

Author: Arvind Kumar

Publisher: John Wiley & Sons

Published: 2023-03-06

Total Pages: 373

ISBN-13: 3527350276

DOWNLOAD EBOOK →

In-depth discussion on the physics, chemistry, and engineering beneath the construction of 1D semiconducting hybrid materials 1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronics provides breakthrough research developments and trends in a variety of 1D hybrid nanostructures for chemi-resistive gas sensors and optoelectronics applications, including recent investigations and developments regarding the innovative designing approaches, fabrications, and methods used to characterize these hybrid nanostructures. The text also includes the surface and interface properties of 1D hybrid semiconducting nanostructured materials, as well as their optimization for applications in gas sensing and optoelectronics. This book further addresses the different issues of sensitivity, selectivity, and operating temperature of gas sensors based on hybrid 1D nanostructures. Moreover, it covers the novel and additional functional optoelectronic properties that originate at the interface of 1D semiconducting nanostructures combined with other low dimensional materials. Some of the specific sample topics covered in this book include: Gas sensing and optoelectronic applications of one-dimensional semiconducting hybrid nanostructures, plus synthesis and gas sensing application of 1D semiconducting hybrid nanostructures Room temperature gas sensing properties of metal oxide nanowire/graphene hybrid structures and highly sensitive room temperature gas sensors based on organic-inorganic nanofibers Synthesis and applications of 1D hybrid tin oxide nanostructures and recent advances in semiconducting nanowires-based hybrid structures for solar application Types of semiconducting hybrid nanostructures for optoelectronic devices and hybrid 1D semiconducting ZnO/GaN nanostructures Thanks to its comprehensive coverage of the subject from highly qualified authors who have significant experience in the field, 1D Semiconducting Hybrid Nanostructures is a must-have reference for senior undergraduate and graduate students, professionals, researchers, in the field of semiconductor physics, materials science, surface science, and chemical engineering.

An Atlas for Large-Area Electronic Skins

An Atlas for Large-Area Electronic Skins PDF

Author: Weidong Yang

Publisher: Cambridge University Press

Published: 2020-10-01

Total Pages: 101

ISBN-13: 1108804055

DOWNLOAD EBOOK →

Electronic skins are critical for many applications in human-machine-environment interactions. Tactile sensitivity over large areas can be especially applied to prosthetics. Moreover, the potential for wearables, interactive surfaces, and human robotics have propelled research in this area. In this Element, we provide an account and directional atlas of the progress in materials and devices for electronic skins, in the context of sensing principles and skin-like features. Additionally, we give an overview of essential electronic circuits and systems used in large-area tactile sensor arrays. Finally, we present the challenges and provide perspectives on future developments.

Stretchable Systems

Stretchable Systems PDF

Author: Yogeenth Kumaresan

Publisher: Cambridge University Press

Published: 2022-01-27

Total Pages: 124

ISBN-13: 1108899587

DOWNLOAD EBOOK →

Stretchable electronics is one of the transformative pillars of future flexible electronics. As a result, the research on new passive and active materials, novel designs, and engineering approaches has attracted significant interest. Recent studies have highlighted the importance of new approaches that enable the integration of high-performance materials, including, organic and inorganic compounds, carbon-based and layered materials, and composites to serve as conductors, semiconductors or insulators, with the ability to accommodate electronics on stretchable substrates. This Element presents a discussion about the strategies that have been developed for obtaining stretchable systems, with a focus on various stretchable geometries to achieve strain invariant electrical response, and summarises the recent advances in terms of material research, various integration techniques of high-performance electronics. In addition, some of the applications, challenges and opportunities associated with the development of stretchable electronics are discussed.

Advances in Semiconductor Technologies

Advances in Semiconductor Technologies PDF

Author: An Chen

Publisher: John Wiley & Sons

Published: 2022-10-11

Total Pages: 372

ISBN-13: 1119869587

DOWNLOAD EBOOK →

Advances in Semiconductor Technologies Discover the broad sweep of semiconductor technologies in this uniquely curated resource Semiconductor technologies and innovations have been the backbone of numerous different fields: electronics, online commerce, the information and communication industry, and the defense industry. For over fifty years, silicon technology and CMOS scaling have been the central focus and primary driver of innovation in the semiconductor industry. Traditional CMOS scaling has approached some fundamental limits, and as a result, the pace of scientific research and discovery for novel semiconductor technologies is increasing with a focus on novel materials, devices, designs, architectures, and computer paradigms. In particular, new computing paradigms and systems—such as quantum computing, artificial intelligence, and Internet of Things—have the potential to unlock unprecedented power and application space. Advances in Semiconductor Technologies provides a comprehensive overview of selected semiconductor technologies and the most up-to-date research topics, looking in particular at mainstream developments in current industry research and development, from emerging materials and devices, to new computing paradigms and applications. This full-coverage volume gives the reader valuable insights into state-of-the-art advances currently being fabricated, a wide range of novel applications currently under investigation, and a glance into the future with emerging technologies in development. Advances in Semiconductor Technologies readers will also find: A comprehensive approach that ensures a thorough understanding of state-of-the-art technologies currently being fabricated Treatments on all aspects of semiconductor technologies, including materials, devices, manufacturing, modeling, design, architecture, and applications Articles written by an impressive team of international academics and industry insiders that provide unique insights into a wide range of topics Advances in Semiconductor Technologies is a useful, time-saving reference for electrical engineers working in industry and research, who are looking to stay abreast of rapidly advancing developments in semiconductor electronics, as well as academics in the field and government policy advisors.

Hybrid Systems-in-Foil

Hybrid Systems-in-Foil PDF

Author: Mourad Elsobky

Publisher: Cambridge University Press

Published: 2021-10-14

Total Pages: 92

ISBN-13: 1108983383

DOWNLOAD EBOOK →

Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of conventional More-than-More Systems-in/on-Package (SiPs and SoPs) to the flexible electronics world. In HySiF, an economical implementation of flexible electronic systems is possible by integrating a minimum number of embedded silicon chips and a maximum number of on-foil components. Here, the complementary characteristics of CMOS SoCs and larger area organic and printed electronics are combined in a HySiF-compatible polymeric substrate. Within the HySiF scope, the fabrication process steps and the integration design rules with all the accompanying boundary conditions concerning material compatibility, surface properties, and thermal budget, are defined. This Element serves as an introduction to the HySiF concept. A summary of recent ultra-thin chip fabrication and flexible packaging techniques is provided. Several bendable electronic components are presented demonstrating the benefits of HySiF. Finally, prototypes of flexible wireless sensor systems that adopt the HySiF concept are demonstrated.

Semiconducting Fibers

Semiconducting Fibers PDF

Author: Ram K. Gupta

Publisher: CRC Press

Published: 2024-08-23

Total Pages: 291

ISBN-13: 1040121330

DOWNLOAD EBOOK →

Semiconducting Fibers: Preparation, Advances, and Applications is a comprehensive study of the properties and emerging applications of semiconducting fibers. These nanomaterials have unique optoelectronic properties: they are flexible, one-dimensional, and lightweight, and can grow in bulk, thin films, and nano-dimensions (0D, 1D, 2D, 3D). Written by experts from around the world, this book covers the fundamentals of semiconducting fibers, their fabrication, and emerging applications in electronics, optoelectronics, energy, and healthcare. Various approaches to fabricating semiconducting fibers, their characteristics, and the working principles of nano-dimensional devices are covered. Key features: Expert scientists across the world present state-of-the-art progress on semiconducting fibers for emerging applications, including flexible and wearable electronics Provides details of novel methods and advanced technologies used in energy applications of semiconducting fibers Provides fundamentals of electrochemical behavior and their understanding of optoelectronics, photovoltaics, batteries, fuel cells, sensors, and supercapacitors Presents fabrication, characterization, and applications of semiconducting fibers for energy conversion and storage This book will be a key resource for students, academics, and industry professionals interested in the fabrication, device technologies, and applications of semiconducting fibers.

Semiconductor Nanostructures for Optoelectronic Devices

Semiconductor Nanostructures for Optoelectronic Devices PDF

Author: Gyu-Chul Yi

Publisher: Springer Science & Business Media

Published: 2012-01-13

Total Pages: 347

ISBN-13: 3642224806

DOWNLOAD EBOOK →

This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.

Functionalized Nanomaterials Based Supercapacitor

Functionalized Nanomaterials Based Supercapacitor PDF

Author: Chaudhery Mustansar Hussain

Publisher: Springer Nature

Published: 2023-10-05

Total Pages: 690

ISBN-13: 9819930219

DOWNLOAD EBOOK →

This book portrays an extensive outline of “functionalized nanomaterials based supercapacitor”, including their fundamental as well as industrial-scale exploratory research. The contributed parts stretch the readers a complete report of the field of functionalized nanomaterials-based supercapacitor appropriate hypothetical standard of their structure to their execution, realization and potential application. It covers the latest system and functionalized nanomaterials for preparation, development, construction, validation and design of supercapacitor for commercial application. To best of our knowledge, there is no book available on the topic. Advanced undergraduate and graduate students can find this book a good source of knowledge and guidelines for their studies. They can find this book highly up to date, easy to use and understandable. This book is able to ease their thirst of learning of new and advanced electrochemical sensors. Moreover, the volume editors anticipate that this book is of significant interest to scientists working on the basic issues surrounding applications of nanotechnology in electrochemical sensors. Because of the multidisciplinary nature of this topic, this book attracts a broad audience including chemists, materials scientists, pharmacist, biologist and chemical engineers, who are involved and interested in the future frontiers of functionalized nanomaterials-based supercapacitor sciences and technology. Overall, this book is planned to be a reference book for researchers and scientists who are searching for new and advancement in supercapacitors sciences and technology.

Handbook of Flexible and Stretchable Electronics

Handbook of Flexible and Stretchable Electronics PDF

Author: Muhammad M. Hussain

Publisher: CRC Press

Published: 2019-11-11

Total Pages: 536

ISBN-13: 1351623109

DOWNLOAD EBOOK →

Flexibility and stretchability of electronics are crucial for next generation electronic devices that involve skin contact sensing and therapeutic actuation. This handbook provides a complete entrée to the field, from solid-state physics to materials chemistry, processing, devices, performance, and reliability testing, and integrated systems development. This work shows how microelectronics, signal processing, and wireless communications in the same circuitry are impacting electronics, healthcare, and energy applications. Key Features: • Covers the fundamentals to device applications, including solid-state and mechanics, chemistry, materials science, characterization techniques, and fabrication; • Offers a comprehensive base of knowledge for moving forward in this field, from foundational research to technology development; • Focuses on processing, characterization, and circuits and systems integration for device applications; • Addresses the basic physical properties and mechanics, as well as the nuts and bolts of reliability and performance analysis; • Discusses various technology applications, from printed electronics to logic and memory devices, sensors, actuators, displays, and energy storage and harvesting. This handbook will serve as the one-stop knowledge base for readership who are interested in flexible and stretchable electronics.