Proofs & Theories

Proofs & Theories PDF

Author: Louise Gluck

Publisher: HarperCollins

Published: 2022-01-04

Total Pages: 154

ISBN-13: 0063117614

DOWNLOAD EBOOK →

Winner of the Nobel Prize in Literature Proofs and Theories, winner of the PEN/Martha Albrand Award for First Non-Fiction, is an illuminating collection of essays by Louise Glück, one of this country's most brilliant poets. Like her poems, the prose of Glück, who won the Pulitzer Prize for poetry in 1993 for The Wild Iris, is compressed, fastidious, fierce, alert, and absolutely unconsoled. The force of her thought is evident everywhere in these essays, from her explorations of other poets' work to her skeptical contemplation of current literary critical notions such as "sincerity" and "courage." Here also are Glück's revealing reflections on her own education and life as a poet, and a tribute to her teacher and mentor, Stanley Kunitz. Proofs and Theories is not a casual collection. It is the testament of a major poet.

Handbook of Proof Theory

Handbook of Proof Theory PDF

Author: S.R. Buss

Publisher: Elsevier

Published: 1998-07-09

Total Pages: 810

ISBN-13: 9780080533186

DOWNLOAD EBOOK →

This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.

Proof Theory

Proof Theory PDF

Author: Peter Aczel

Publisher: Cambridge University Press

Published: 1992

Total Pages: 320

ISBN-13: 9780521414135

DOWNLOAD EBOOK →

The lecture courses in this work are derived from the SERC 'Logic for IT' Summer School and Conference on Proof Theory held at Leeds University. The contributions come from acknowledged experts and comprise expository and research articles; put together in this book they form an invaluable introduction to proof theory that is aimed at both mathematicians and computer scientists.

Advances in Proof-Theoretic Semantics

Advances in Proof-Theoretic Semantics PDF

Author: Thomas Piecha

Publisher: Springer

Published: 2015-10-24

Total Pages: 283

ISBN-13: 331922686X

DOWNLOAD EBOOK →

This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.

Selected Papers in Proof Theory

Selected Papers in Proof Theory PDF

Author: Grigorii E. Mints

Publisher: North-Holland

Published: 1992-01-01

Total Pages: 294

ISBN-13: 9780444896193

DOWNLOAD EBOOK →

This collection includes papers devoted to the structural theory of proofs, which was born in the framework of Hilbert's program and is applied now in connection with various projects using the effective contents of formalized proofs. The main tool and unifying topic here is normalization, i.e. putting proofs into a normal form. The book presupposes some familiarity with the definition and elementary properties of Gentzen-type systems but little more. The first three papers introduce various normalization procedures different from popular ones. The next group deals with unwinding proofs, that is the extraction of an explicit realization from the proof of existential theorems. Normalization (or more precisely, normal form theorems) is applied to the solution of some problems in the following two papers. A separate group is formed by three papers dealing with applications of the theory of proofs to algebra, more specifically to coherence theorems in category theory. The last paper of the volume is a survey of proof theory and elementary model theory for modal logic up to the year 1974.

Dag Prawitz on Proofs and Meaning

Dag Prawitz on Proofs and Meaning PDF

Author: Heinrich Wansing

Publisher: Springer

Published: 2014-11-27

Total Pages: 458

ISBN-13: 3319110411

DOWNLOAD EBOOK →

This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an introductory paper that surveys Prawitz's numerous contributions to proof theory and proof-theoretic semantics and puts his work into a somewhat broader perspective, both historically and systematically. Chapters include either in-depth studies of certain aspects of Dag Prawitz's work or address open research problems that are concerned with core issues in structural proof theory and range from philosophical essays to papers of a mathematical nature. Investigations into the necessity of thought and the theory of grounds and computational justifications as well as an examination of Prawitz's conception of the validity of inferences in the light of three “dogmas of proof-theoretic semantics” are included. More formal papers deal with the constructive behaviour of fragments of classical logic and fragments of the modal logic S4 among other topics. In addition, there are chapters about inversion principles, normalization of p roofs, and the notion of proof-theoretic harmony and other areas of a more mathematical persuasion. Dag Prawitz also writes a chapter in which he explains his current views on the epistemic dimension of proofs and addresses the question why some inferences succeed in conferring evidence on their conclusions when applied to premises for which one already possesses evidence.

An Introduction to Proof Theory

An Introduction to Proof Theory PDF

Author: Paolo Mancosu

Publisher: Oxford University Press

Published: 2021

Total Pages: 431

ISBN-13: 0192895931

DOWNLOAD EBOOK →

An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.

Foundations of Constructive Analysis

Foundations of Constructive Analysis PDF

Author: Errett Bishop

Publisher: Ishi Press

Published: 2012-07

Total Pages: 404

ISBN-13: 9784871877145

DOWNLOAD EBOOK →

This book, Foundations of Constructive Analysis, founded the field of constructive analysis because it proved most of the important theorems in real analysis by constructive methods. The author, Errett Albert Bishop, born July 10, 1928, was an American mathematician known for his work on analysis. In the later part of his life Bishop was seen as the leading mathematician in the area of Constructive mathematics. From 1965 until his death, he was professor at the University of California at San Diego.

Proof Theory

Proof Theory PDF

Author: Wolfram Pohlers

Publisher: Springer Science & Business Media

Published: 2008-10-01

Total Pages: 380

ISBN-13: 354069319X

DOWNLOAD EBOOK →

The kernel of this book consists of a series of lectures on in?nitary proof theory which I gave during my time at the Westfalische ̈ Wilhelms–Universitat ̈ in Munster ̈ . It was planned as a successor of Springer Lecture Notes in Mathematics 1407. H- ever, when preparing it, I decided to also include material which has not been treated in SLN 1407. Since the appearance of SLN 1407 many innovations in the area of - dinal analysis have taken place. Just to mention those of them which are addressed in this book: Buchholz simpli?ed local predicativity by the invention of operator controlled derivations (cf. Chapter 9, Chapter 11); Weiermann detected applications of methods of impredicative proof theory to the characterization of the provable recursive functions of predicative theories (cf. Chapter 10); Beckmann improved Gentzen’s boundedness theorem (which appears as Stage Theorem (Theorem 6. 6. 1) in this book) to Theorem 6. 6. 9, a theorem which is very satisfying in itself - though its real importance lies in the ordinal analysis of systems, weaker than those treated here. Besides these innovations I also decided to include the analysis of the theory (? –REF) as an example of a subtheory of set theory whose ordinal analysis only 2 0 requires a ?rst step into impredicativity. The ordinal analysis of(? –FXP) of non- 0 1 0 monotone? –de?nable inductive de?nitions in Chapter 13 is an application of the 1 analysis of(? –REF).